Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
b) \(B=A.\dfrac{-10}{x-4}=\dfrac{x-4}{x+5}.\dfrac{-10}{x-4}=\dfrac{-10}{x+5}\)
Để B nguyên <=> x+5 nguyên mà \(x\in Z\Rightarrow x+5\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
\(\Leftrightarrow x\in\left\{-6;-4;-3;-7;0;-10;-15;5\right\}\) kết hợp với điều kiện của x
\(\Rightarrow x\in\left\{-15;-10;-6;-7;-3;0;5\right\}\)
Bài 5:
Có \(\left|x-2018\right|+\left|2x-2019\right|+\left|3x-2020\right|\ge0\) \(\forall\)x
\(\Rightarrow x-2021\ge0\) \(\Leftrightarrow x\ge2021\)
\(\Rightarrow x-2018>0,2x-2019>0,3x-2020>0\)
PT \(\Leftrightarrow x-2018+2x-2019+3x-2020=x-2021\)
\(\Leftrightarrow5x=4036\) \(\Leftrightarrow x=\dfrac{4036}{5}< 2021\) (L)
Vậy pt vô nghiệm
\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
1: \(\Leftrightarrow B+2x^2y^3=xy+x^2y^3\)
=>B=xy-x^2y^3
2: \(\Leftrightarrow B-x^3y=x^2-x^3y\)
=>B=x^2
3: =>-B-3y=-3y-2x^3y^6
=>-B=-2x^3y^6
=>B=2x^3y^6
4: =>\(B-xy^4=2y^4-xy^4\)
=>B=2y^4
5: =>\(B-\dfrac{5}{3}y^2=\dfrac{2}{3}x^2-\dfrac{5}{3}y^2\)
=>B=2/3x^2
6: =>\(B-\dfrac{5}{12}x^3y^3=\dfrac{4}{3}x^2y^2-\dfrac{5}{12}x^3y^3\)
=>B=4/3x^2y^2
a)|7x-5|=|2x-3|
=>7x-5=2x-3 hoặc 7x-5=3-2x
=>5x=2 hoặc 9x=8
=>x=\(\frac{2}{5}\) hoặc x=\(\frac{8}{9}\)
Vậy x=\(\frac{2}{5}\) hoặc x=\(\frac{8}{9}\)
b)|4x-5|=x-7
\(VT\ge0\Rightarrow VP\ge0\Rightarrow x-7\ge0\Rightarrow x\ge7\)
=>4x-5=x-7 hoặc 4x-5=-(x-7)
=>3x=-2 hoặc 5x=12
=>x=\(-\frac{2}{3}\)(loại do \(x\ge7\)) hoặc x=\(\frac{12}{5}\)(loại do \(x\ge7\))
Vậy pt vô nghiệm
c)Ta thấy: \(\hept{\begin{cases}\left(x+8\right)^4\ge0\\\left|y-7\right|\ge0\end{cases}}\)
\(\Rightarrow\left(x+8\right)^4+\left|y-7\right|\ge0\)
Dấu = khi \(\hept{\begin{cases}\left(x+8\right)^4=0\\\left|y-7\right|=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x+8=0\\y-7=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-8\\y=7\end{cases}}\)
Vậy \(\hept{\begin{cases}x=-8\\y=7\end{cases}}\)
Bài 2:
1) \(x^2-4=x^2-2^2=\left(x-2\right)\left(x+2\right)\)
2) \(1-4x^2=1^2-\left(2x\right)^2=\left(1-2x\right)\left(1+2x\right)\)
3) \(4x^2-9=\left(2x\right)^2-3^2=\left(2x+3\right)\left(2x-3\right)\)
4) \(9-25x^2=3^2-\left(5x\right)^2=\left(3-5x\right)\left(3+5x\right)\)
5) \(4x^2-25=\left(2x\right)^2-5^2=\left(2x+5\right)\left(2x-5\right)\)
6) \(9x^2-36=\left(3x\right)^2-6^2=\left(3x-6\right)\left(3x+6\right)\)
7) \(\left(3x\right)^2-y^2=\left(3x-y\right)\left(3x+y\right)\)
8) \(x^2-\left(2y\right)^2=\left(x-2y\right)\left(x+2y\right)\)
9) \(\left(2x\right)^2-y^2=\left(2x-y\right)\left(2x+y\right)\)
10) \(\left(3x\right)^2-9y^4=\left(3x\right)^2-\left(3y^2\right)^2=\left(3x-3y^2\right)\left(3x+3y^2\right)\)
Bài 2:
21) \(\left(\dfrac{x}{3}-\dfrac{y}{4}\right)\left(\dfrac{x}{3}+\dfrac{y}{4}\right)=\left(\dfrac{x}{3}\right)^2-\left(\dfrac{y}{4}\right)^2=\dfrac{x^2}{9}-\dfrac{y^2}{16}\)
22) \(\left(\dfrac{x}{y}-\dfrac{2}{3}\right)\left(\dfrac{x}{y}+\dfrac{2}{3}\right)=\left(\dfrac{x}{y}\right)^2-\left(\dfrac{2}{3}\right)^2=\dfrac{x^2}{y^2}-\dfrac{4}{9}\)
23) \(\left(\dfrac{x}{2}+\dfrac{y}{3}\right)\left(\dfrac{x}{2}-\dfrac{y}{3}\right)=\left(\dfrac{x}{2}\right)^2-\left(\dfrac{y}{3}\right)^2=\dfrac{x^2}{4}-\dfrac{y^2}{9}\)
24) \(\left(2x-\dfrac{2}{3}\right)\left(\dfrac{2}{3}+2x\right)=\left(2x-\dfrac{2}{3}\right)\left(2x+\dfrac{2}{3}\right)=\left(2x\right)^2-\left(\dfrac{2}{3}\right)^2=4x^2-\dfrac{4}{9}\)
25) \(\left(2x+\dfrac{3}{5}\right)\left(\dfrac{3}{5}-2x\right)=\left(\dfrac{3}{5}+2x\right)\left(\dfrac{3}{5}-2x\right)=\left(\dfrac{3}{5}\right)^2-\left(2x\right)^2=\dfrac{9}{25}-4x^2\)
26) \(\left(\dfrac{1}{2}x-\dfrac{4}{3}\right)\left(\dfrac{4}{3}+\dfrac{1}{2}x\right)=\left(\dfrac{1}{2}x-\dfrac{4}{3}\right)\left(\dfrac{1}{2}x+\dfrac{4}{3}\right)=\left(\dfrac{1}{2}x\right)^2-\left(\dfrac{4}{3}\right)^2=\dfrac{1}{4}x^2-\dfrac{16}{9}\)
27) \(\left(\dfrac{2}{3}x^2-\dfrac{y}{2}\right)\left(\dfrac{2}{3}x^2+\dfrac{y}{2}\right)=\left(\dfrac{2}{3}x^2\right)^2-\left(\dfrac{y}{2}\right)^2=\dfrac{4}{9}x^4-\dfrac{y^2}{4}\)
28) \(\left(3x-y^2\right)\left(3x+y^2\right)=\left(3x\right)^2-\left(y^2\right)^2=9x^2-y^4\)
29) \(\left(x^2-2y\right)\left(x^2+2y\right)=\left(x^2\right)^2-\left(2y\right)^2=x^4-4y^2\)
30) \(\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x^2\right)^2-\left(y^2\right)^2=x^4-y^4\)
1) \(\left(a+b\right)^2-\left(a^3+b^3\right)\)
\(=\left(a+b\right)^3-\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=\left(a+b\right)\left(a^2+2ab+b^2-a^2+ab-b^2\right)\)
\(=3ab\left(a+b\right)\)
2) \(\left(x+1\right)^2-4\left(x+1\right)y^2+4y^4\)
\(=\left(x+1+2y^2\right)^2\)