Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
b) \(B=A.\dfrac{-10}{x-4}=\dfrac{x-4}{x+5}.\dfrac{-10}{x-4}=\dfrac{-10}{x+5}\)
Để B nguyên <=> x+5 nguyên mà \(x\in Z\Rightarrow x+5\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
\(\Leftrightarrow x\in\left\{-6;-4;-3;-7;0;-10;-15;5\right\}\) kết hợp với điều kiện của x
\(\Rightarrow x\in\left\{-15;-10;-6;-7;-3;0;5\right\}\)
Bài 5:
Có \(\left|x-2018\right|+\left|2x-2019\right|+\left|3x-2020\right|\ge0\) \(\forall\)x
\(\Rightarrow x-2021\ge0\) \(\Leftrightarrow x\ge2021\)
\(\Rightarrow x-2018>0,2x-2019>0,3x-2020>0\)
PT \(\Leftrightarrow x-2018+2x-2019+3x-2020=x-2021\)
\(\Leftrightarrow5x=4036\) \(\Leftrightarrow x=\dfrac{4036}{5}< 2021\) (L)
Vậy pt vô nghiệm
\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
a)|7x-5|=|2x-3|
=>7x-5=2x-3 hoặc 7x-5=3-2x
=>5x=2 hoặc 9x=8
=>x=\(\frac{2}{5}\) hoặc x=\(\frac{8}{9}\)
Vậy x=\(\frac{2}{5}\) hoặc x=\(\frac{8}{9}\)
b)|4x-5|=x-7
\(VT\ge0\Rightarrow VP\ge0\Rightarrow x-7\ge0\Rightarrow x\ge7\)
=>4x-5=x-7 hoặc 4x-5=-(x-7)
=>3x=-2 hoặc 5x=12
=>x=\(-\frac{2}{3}\)(loại do \(x\ge7\)) hoặc x=\(\frac{12}{5}\)(loại do \(x\ge7\))
Vậy pt vô nghiệm
c)Ta thấy: \(\hept{\begin{cases}\left(x+8\right)^4\ge0\\\left|y-7\right|\ge0\end{cases}}\)
\(\Rightarrow\left(x+8\right)^4+\left|y-7\right|\ge0\)
Dấu = khi \(\hept{\begin{cases}\left(x+8\right)^4=0\\\left|y-7\right|=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x+8=0\\y-7=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-8\\y=7\end{cases}}\)
Vậy \(\hept{\begin{cases}x=-8\\y=7\end{cases}}\)
2:
a: BC=căn 15^2+20^2=25cm
AH=15*20/25=12cm
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
=>DE=AH=12cm
b: ΔAHB vuông tại H có HD vuông góc AB
nên AD*AB=AH^2
ΔAHC vuông tại H có HE vuông góc AC
nên AE*AC=AH^2
=>AD*AB=AE*AC
c: góc IAC+góc AED
=góc ICA+góc AHD
=góc ACB+góc ABC=90 độ
=>AI vuông góc ED
4:
a: góc BDH=góc BEH=góc DBE=90 độ
=>BDHE là hình chữ nhật
b: BDHE là hình chữ nhật
=>góc BED=góc BHD=góc A
Xét ΔBED và ΔBAC có
góc BED=góc A
góc EBD chung
=>ΔBED đồng dạng với ΔBAC
=>BE/BA=BD/BC
=>BE*BC=BA*BD
c: góc MBC+góc BED
=góc C+góc BHD
=góc C+góc A=90 độ
=>BM vuông góc ED