K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2020

a) \(\sqrt{12-3\sqrt{15}}\)

\(=\sqrt{\frac{3}{2}\left(8-2\sqrt{15}\right)}\)

\(=\sqrt{\frac{3}{2}\left(5-2.\sqrt{3}.\sqrt{5}+3\right)}\)

\(=\sqrt{\frac{3}{2}\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\frac{\sqrt{6}}{2}.\left|\sqrt{5}-\sqrt{3}\right|\)

\(=\frac{\sqrt{6}}{2}.\left(\sqrt{5}-\sqrt{3}\right)\) 

:v a giúp e nè :P

\(x^5-x=2000\)

\(\Leftrightarrow x.\left(x^4-1\right)=2000\)

\(\Leftrightarrow x.\left(x^2-1\right).\left(x^2+1\right)=2000\)

\(\Leftrightarrow x.\left(x-1\right).\left(x+1\right).\left(x^2+1\right)=2000\)

vì VP chia hết cho 3  mà 2000 ko chia hết cho 3 

Vậy....

21 tháng 4 2019

Vây sao nữa a?

8 tháng 5 2018

+) Nếu \(x< 2\Leftrightarrow|x-2|=2-x\)

                           \(|2-x|=2-x\)

\(pt\Leftrightarrow2-x+2-x=10\)

\(\Leftrightarrow-2x+4=10\)

\(\Leftrightarrow-2x=6\)

\(\Leftrightarrow x=-3\left(tm\right)\)

+) Nếu  \(x\ge2\Leftrightarrow|x-2|=x-2\)

                                \(|2-x|=x-2\)

\(pt\Leftrightarrow x-2+x-2=10\)

\(\Leftrightarrow2x-4=10\)

\(\Leftrightarrow2x=14\)

\(\Leftrightarrow x=7\left(tm\right)\)

Vậy phương trình có tập nghiệm  \(S=\left\{-3;7\right\}\)

16 tháng 11 2019

Ta có:

\(\frac{2}{x^2+2x}+\frac{2}{x^2+6x+8}+\frac{2}{x^2+10x+24}+\frac{1}{x+6}\)

\(\frac{2}{x\left(x+2\right)}+\frac{2}{x^2+4x+2x+8}+\frac{2}{x^2+4x+6x+24}+\frac{1}{x+6}\)

\(\frac{2}{x\left(x+2\right)}+\frac{2}{x\left(x+4\right)+2\left(x+4\right)}+\frac{2}{x\left(x+4\right)+4\left(x+6\right)}+\frac{1}{x+6}\)

\(\frac{2}{x\left(x+2\right)}+\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{2}{\left(x+4\right)\left(x+6\right)}+\frac{1}{x+6}\)

\(\frac{1}{x}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+6}+\frac{1}{x+6}\)

\(\frac{1}{x}\)

14 tháng 2 2016

\(a.\)  Từ  \(x-2y=1\)  \(\Rightarrow\)  \(x=1+2y\)  \(\left(\text{*}\right)\)

Thay  \(x=1+2y\)  vào \(A\), khi đó, biểu thức \(A\)  trở thành

\(A=\left(1+2y\right)^2+y^2+4=1+4y+4y^2+y^2+4=5y^2+4y+5\)

\(A=5\left(y^2+\frac{4}{5}y+1\right)=5\left(y^2+2.\frac{2}{5}.y+\frac{4}{25}+\frac{21}{25}\right)=5\left(y+\frac{2}{5}\right)^2+\frac{21}{5}\ge\frac{21}{5}\)  với mọi  \(y\)

Dấu  \(''=''\)   xảy ra  \(\Leftrightarrow\)  \(\left(y+\frac{2}{5}\right)^2=0\)  \(\Leftrightarrow\)  \(y+\frac{2}{5}=0\)  \(\Leftrightarrow\)  \(y=-\frac{2}{5}\)

Thay  \(y=-\frac{2}{5}\)  vào \(\left(\text{*}\right)\), ta được \(x=\frac{1}{5}\)

Vậy,  \(A\)  đạt giá trị nhỏ nhất là  \(A_{min}=\frac{21}{5}\)  khi và chỉ khi   \(x=\frac{1}{5}\)  và  \(y=-\frac{2}{5}\)

\(b.\)  Gọi  \(Q\left(x\right)\)  là thương của phép chia và dư là \(r=ax+b\)  (vì dư trong phép chia cho  \(x^2-1\)  có bậc cao nhất là bậc nhất), với mọi  \(x\)  ta có:

\(x^{2008}-x^3+5=\left(x^2-1\right).Q\left(x\right)+ax+b\)   \(\left(\text{**}\right)\)

Với  \(x=1\)  thì  phương trình \(\left(\text{**}\right)\)  trở thành  \(5=a+b\)  \(\left(1\right)\)

Với  \(x=-1\)  thì phương trình  \(\left(\text{**}\right)\)  trở thành \(7=-a+b\)  \(\left(2\right)\)

Giải hệ phương trình  \(\left(1\right)\)  và  \(\left(2\right)\), ta được \(a=-1\)  và  \(b=6\)

Vậy, dư trong phép chia đa thức  \(x^{2008}-x^3+5\)  cho đa thức \(x^2-1\)  là  \(-x+6\)

 

DH
Đỗ Hoàn
CTVHS VIP
15 tháng 8

bạn đăng lại câu hỏi của bạn nhé, câu hỏi của bạn bị lỗi rồi

9 tháng 9 2018

\(A=9x^2+4x=\left(9x^2+4x+\dfrac{4}{9}\right)-\dfrac{4}{9}=\left(3x+\dfrac{2}{3}\right)^2-\dfrac{4}{9}\ge-\dfrac{4}{9}\)

Vậy GTNN của A là \(-\dfrac{4}{9}\) khi x = \(-\dfrac{2}{9}\)

\(B=25x^2+x-1=\left(25x^2+x+\dfrac{1}{100}\right)-\dfrac{101}{100}=\left(5x+\dfrac{1}{10}\right)^2-\dfrac{101}{100}\ge-\dfrac{101}{100}\)

Vậy GTNN của B là \(-\dfrac{101}{100}\) khi x = \(-\dfrac{1}{50}\)

\(C=3x^2+4x+1=3\left(x^2+\dfrac{4}{3}x+\dfrac{4}{9}\right)-\dfrac{1}{3}=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{1}{3}\ge-\dfrac{1}{3}\)

Vậy GTNN của C là \(-\dfrac{1}{3}\) khi x = \(-\dfrac{2}{3}\)

14 tháng 9 2018

thanks

Từ đề bài, ta có hình vẽ sau:

\(\hat{BAC}=\hat{BAH}+\hat{CAH}=10^0+10^0=20^0\)

Xét ΔABC có

AH là đường cao

AH là đường phân giác

Do đó: ΔABC cân tại A

=>\(\hat{ABC}=\frac{180^0-\hat{BAC}}{2}=\frac{180^0-20^0}{2}=80^0\)

Ta có: \(\hat{KBC}+\hat{KBA}=\hat{ABC}\) (tia BK nằm giữa hai tia BA và BC)

=>\(\hat{KBA}=80^0-40^0=40^0\)

Xét ΔABG và ΔACG có

AB=AC

\(\hat{BAG}=\hat{CAG}\)

AG chung

Do đó: ΔABG=ΔACG

=>\(\hat{ABG}=\hat{ACG}\)

=>\(x=40^0\)

9 tháng 2 2020

SIêu nhân henshin! kkk

9 tháng 2 2020

\(102=x^2+y^2+52\)

\(=\left(x^2+16\right)+\left(y^2+36\right)\)

\(\ge8\left|x\right|+12\left|y\right|\ge8x+12y=4A\)

\(\Rightarrow A\le26\) tại x=4;y=6

Không chắc:v Nếu có thêm dấu giá trị tuyệt đối nữa thì ko dùng cosi được thì phải