Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(3\sqrt{2}-\sqrt{8}+\sqrt{50}-4\sqrt{32}=3\sqrt{2}-2\sqrt{2}+5\sqrt{2}-16\sqrt{2}=-10\sqrt{2}\)
b) \(5\sqrt{48}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}=20\sqrt{3}-12\sqrt{3}-10\sqrt{3}+6\sqrt{3}=4\sqrt{3}\)
c)\(\sqrt{12}+2\sqrt{75}-3\sqrt{48}-\frac{2}{7}\sqrt{147}=2\sqrt{3}+10\sqrt{3}-12\sqrt{3}-2\sqrt{3}=-2\sqrt{3}\)
d) \(\sqrt{\left(3+\sqrt{5}\right)^2}-\sqrt{9-4\sqrt{5}}\)
\(=\left|3+\sqrt{5}\right|-\sqrt{\left(\sqrt{5}-2\right)^2}=3+\sqrt{5}-\left|\sqrt{5}-2\right|=3+\sqrt{5}-\sqrt{5}+2=5\)
e) \(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\frac{\sqrt{5}+\sqrt{2}}{3}\)
\(=\left[\frac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right]\cdot\frac{3}{\sqrt{5}+\sqrt{2}}\)
\(=-\left(\sqrt{2}+\sqrt{5}\right)\cdot\frac{3}{\sqrt{5}+\sqrt{2}}=-3\)
Nản k lm nữa ^^
d/ \(x=\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\)
\(\Leftrightarrow x^3=3+\sqrt{9+\frac{125}{27}}+3-\sqrt{9+\frac{125}{27}}-3\left(\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\right)\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}.\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\)
\(\Leftrightarrow x^3=6-3x\sqrt[3]{9-9-\frac{125}{27}}\)
\(\Leftrightarrow x^3=6-5x\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow x=1\)
c/
\(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{12}+4}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{4+2\sqrt{3}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
\(=3-1=2\)
a)
\((4+\sqrt{15})(\sqrt{10}-\sqrt{6})\sqrt{4-\sqrt{15}}=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{3+5-2\sqrt{3.5}}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})^2=(4+\sqrt{15})(8-2\sqrt{15})=2(4+\sqrt{15})(4-\sqrt{15})\)
\(=2(4^2-15)=2\)
b)
\(\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}=\sqrt{(8+2\sqrt{15})+2+2(\sqrt{6}+\sqrt{10})}\)
\(=\sqrt{(\sqrt{5}+\sqrt{3})^2+2\sqrt{2}(\sqrt{3}+\sqrt{5})+2}\)
\(=\sqrt{(\sqrt{5}+\sqrt{3}+\sqrt{2})^2}=\sqrt{5}+\sqrt{3}+\sqrt{2}\)
c)
\((\sqrt{5+2\sqrt{9\sqrt{5}-19}}-\sqrt{7-\sqrt{5}}):(2\sqrt{\sqrt{5}-2})\)
\(=(\sqrt{(5+2\sqrt{9\sqrt{5}-19})(\sqrt{5}+2)}-\sqrt{(7-\sqrt{5})(\sqrt{5}+2)}):(2\sqrt{(\sqrt{5}-2)(\sqrt{5}+2)})\)
\(=[\sqrt{10+5\sqrt{5}+2\sqrt{(9\sqrt{5}-19)(9+4\sqrt{5})}}-\sqrt{9+5\sqrt{5}}]:2\)
\(=[\sqrt{10+5\sqrt{5}+2\sqrt{9+5\sqrt{5}}}-\sqrt{9+5\sqrt{5}}]:2\)
\(=[\sqrt{(9+5\sqrt{5})+2\sqrt{9+5\sqrt{5}}+1}-\sqrt{9+5\sqrt{5}}]:2\)
\(=[\sqrt{(\sqrt{9+5\sqrt{5}}+1)^2}-\sqrt{9+5\sqrt{5}}]:2\)
\(=[\sqrt{9+5\sqrt{5}}+1-\sqrt{9+5\sqrt{5}}]:2=\frac{1}{2}\)
d)
\((\sqrt{9+\sqrt{5}}+\sqrt{9-\sqrt{5}})^2=18+2\sqrt{(9+\sqrt{5})(9-\sqrt{5})}=18+4\sqrt{19}\)
\(\Rightarrow \sqrt{9+\sqrt{5}}+\sqrt{9-\sqrt{5}}=\sqrt{18+4\sqrt{19}}\)
Do đó:
\(\frac{\sqrt{9+\sqrt{5}}+\sqrt{9-\sqrt{5}}}{\sqrt{9+2\sqrt{19}}}-\sqrt{3-2\sqrt{2}}=\frac{\sqrt{18+4\sqrt{19}}}{\sqrt{9+2\sqrt{19}}}-\sqrt{2+1-2\sqrt{2.1}}\)
\(=\frac{\sqrt{2}.\sqrt{9+2\sqrt{19}}}{\sqrt{9+2\sqrt{19}}}-\sqrt{(\sqrt{2}-1)^2}=\sqrt{2}-(\sqrt{2}-1)=1\)
a) \(=\left|\sqrt{5}-3\right|+\sqrt{5-2\sqrt{20}+4}\)
\(=3-\sqrt{5}+\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(=3-\sqrt{5}+\left|\sqrt{5}-2\right|\)
\(=3-\sqrt{5}+\sqrt{5}-2\)
\(=1\)
b)\(=\left(\sqrt{5}+1\right)\cdot\sqrt{2}\cdot\left(6-2\sqrt{5}\right)\cdot\sqrt{3+\sqrt{5}}\)
\(=\left(\sqrt{5}+1\right)\left(6-2\sqrt{5}\right)\sqrt{6+2\sqrt{5}}\)
\(=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=\left(\sqrt{5}+1\right)^2\left(\sqrt{5}-1\right)^2\)
\(=16\)
a) nhân ra thôi b
\(=\frac{\left(2\sqrt{10}-5\right)\left(9+\sqrt{10}\right)}{71}=\frac{18\sqrt{10}-45+20-5\sqrt{10}}{71}=\frac{-25+13\sqrt{10}}{71}.\)
b)cách khác nhé !\(\frac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}=\frac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}=\frac{\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{6}}{2}.\)