Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Ta có: \(\left(n+2\right)^2-\left(n-2\right)^2\)
\(=\left(n+2+n-2\right)\left(n+2-n+2\right)\)
\(=4\cdot2n=8n⋮8\)
b: Ta có: \(\left(n+7\right)^2-\left(n-5\right)^2\)
\(=\left(n+7-n+5\right)\left(n+7+n-5\right)\)
\(=12\cdot\left(2n+2\right)\)
\(=24\left(n+1\right)⋮24\)
a: \(=\left(4n-7-5\right)\left(4n-7+5\right)\)
\(=\left(4n-12\right)\left(4n-2\right)\)
\(=8\left(n-3\right)\left(2n-1\right)⋮8\)
\(A=\left(7n-2\right)^2-\left(2n-7\right)^2\)
xét n = 1 ta có \(A=5^2-\left(-5\right)^2=0⋮7\)
xét n = 2 ta có \(A=12^2-\left(-3\right)^2=135⋮̸7\)
=> đề bài sai
\(c,=\left(31,8-21,8\right)^2=10^2=100\\ 12,\\ a,\left(n+2\right)^2-\left(n-2\right)^2\\ =\left(n+2-n+2\right)\left(n+2+n-2\right)\\ =4\cdot2n=8n⋮8\\ b,\left(n+7\right)^2-\left(n-5\right)^2\\ =\left(n+7-n+5\right)\left(n+7+n-5\right)\\ =12\left(2n+2\right)=24\left(n+1\right)⋮24\)
Bài 1: \(\left(5n+2\right)^2-4=\left(25n^2+2.2.5n+2^2\right)-4=25n^2+20n+4-4\)
\(=25n^2+20n=5n\left(5n+4\right)\)
Có \(5n\left(5n+4\right)⋮5\) (có cơ số 5n)
=> \(\left(5n+2\right)^2-4⋮5\)
Bài 2: \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Đây là tích ba số tự nhiên liên tiếp nên chia hết cho 3.
Vậy: \(n^3-n⋮3\)
Bài 3: \(x^2\left(x-3\right)+12-4x=0\)
\(\Leftrightarrow x^2\left(x-3\right)+4\left(3-x\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x-3\right)=0\)
\(\Leftrightarrow x^2=4,x=3\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-2\\x=3\end{array}\right.\)
Câu 1:
Ta có:(5n+2)2-4=25n2+20n+4-4
=5.5n2+5.4n
=5.(5n2+4n)
Vì 5.(5n2+4n) chia hêt cho 5
Suy ra:(5n+2)2-4
Câu 2:
Ta có:
n3-n=n.n2-n
=n.(n2-1)
=(n-1).n.(n+1)
Vì (n-1);n và (n+1) là ba số tự nhiên liên tiếp
Mà (n-1).n.(n+1) chia hết cho 3(1)
Và (n-1).(n+1) chia hêt cho 2(2)
Từ (1) và (2) suy ra:(n-1).n.(n+1) chia hết cho 6
Bài 2.
\(n^4-2n^3-n^2+2n=n\left(n^3-2n^2-n+2\right)=n\left[n^2\left(n-2\right)-\left(n-2\right)\right]\)
\(=n\left(n-2\right)\left(n^2-1\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\)
là tích của \(4\)số nguyên liên tiếp nên trong đó có ít nhất \(1\)thừa số chia hết cho \(4\), \(1\)thừa số chia hết cho \(3\), \(1\)thừa số chia hết cho \(2\)nhưng không chia hết cho \(4\)
do đó \(A\)chia hết cho \(2.3.4=24\).
Ta có đpcm.
Bài 1:
\(2-x=2\left(x-2\right)^3\)
\(\Leftrightarrow\left(x-2\right)\left[2\left(x-2\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2\left(x-2\right)^2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\pm\sqrt{\frac{1}{2}}+2\end{cases}}\)
bài này dễ mà. như sau nhé :
(5n+2)2-4= 25n2+20n+4-4 (áp dụng hằng đẳng thức số 1)
= 25n2+20n
Vì 25 chia hết cho 5 => 25n2 chia hết cho 5 với mọi số nguyên n
20 chia hết cho 5 => 20n chia hết cho 5 với mọi số nguyên n
=> (25n2 + 20n) chia hết cho 5 với mọi số nguyên n
=> (5n +2)2 - 4 chia hết cho 5 với mọi số nguyên n
k cko mk nhé !!!
a) Ta có : (n + 2)2 - (n - 2)2
= [(n + 2) + (n - 2)][(n + 2) - (n - 2)] (áp dụng hang đẳng thức a2 - b2 = (a + b) (a - b)
= 2n.4
= 8n
Mà n là số tự nhiên => 8n chia hết cho 8
Vậy (n + 2)2 - (n - 2)2 chia hết cho 8
Ta có : (n + 7)2 - (n - 5)2
= [(n + 7) + (n - 5)][(n + 7) - (n - 5]
= (2n + 2).12
= 2(n + 1).12
= 24(n + 1)
Mà n là số nguyên => 24(n + 1) chia hết cho 24
Vậy (n + 7)2 - (n - 5)2 chia hết cho 24
\(\left(n+6\right)^2-\left(n-6\right)^2=\left(n+6-n+6\right)\left(n+6+n-6\right)=12.2n=24n⋮24\forall n\in Z\)
\(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left(n+6+n-6\right)\left(n+6-n+6\right)\)
\(=24n⋮24\)
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
Bài 2:
x2 - 4x = -4
x2 - 4x + 4 = 0
(x-2)2 = 0
=> x-2 = 0
x = 2
Câu 3 đang làm.
Bài 3 :
a, Ta có :
\(\left(n+2\right)^2-\left(n-2\right)^2⋮8\)
\(\left(n+2\right)^2-\left(n+2\right)^2⋮8\)
\(\Rightarrow0⋮8\)
=> Với mọi số nguyên n thì
\(\left(n+2\right)^2-\left(n-2\right)^2⋮8\)