Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow3x^2+24x-x^2-2x^2-2x=2\Leftrightarrow22x=2\Leftrightarrow x=\dfrac{1}{11}\\ b,\Leftrightarrow\left[{}\begin{matrix}5-x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
Bài 8:
a: Ta có: \(A=\left(\dfrac{x-2}{x^2-1}-\dfrac{x+2}{x^2+2x+1}\right)\cdot\dfrac{x^4-2x^2+1}{2}\)
\(=\dfrac{\left(x-2\right)\left(x+1\right)-\left(x+2\right)\left(x-1\right)}{\left(x+1\right)^2\cdot\left(x-1\right)}\cdot\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)^2}{2}\)
\(=\dfrac{x^2-x-2-x^2-x-2}{1}\cdot\dfrac{x-1}{2}\)
\(=\dfrac{-2x\cdot\left(x-1\right)}{2}=-x\left(x-1\right)\)
Bài 8:
a) \(A=\left(\dfrac{x-2}{x^2-1}-\dfrac{x+2}{x^2+2x+1}\right).\dfrac{x^4-2x^2+1}{2}\left(đk:x\ne1,x\ne-1\right)\)
\(=\dfrac{\left(x-2\right)\left(x+1\right)-\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)^2}.\dfrac{\left(x^2-1\right)^2}{2}=\dfrac{x^2-x-2-x^2-x+2}{\left(x-1\right)\left(x+1\right)^2}.\dfrac{\left(x-1\right)^2\left(x+1\right)^2}{2}=\dfrac{-2x\left(x-1\right)}{2}=-x^2+x\)
b) \(x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)\(\Leftrightarrow x=2\)(do đkxđ của A là \(x\ne1\))
\(A=-x^2+x=-2^2+2=-2\)
c) Do \(A=-x^2+x\in Z\forall x\in Z\)
\(\Rightarrow A\in Z\Leftrightarrow x\in Z\)
ngày mai mình thi học kì, đây là bài luyện tập, các bạn làm hộ để mình check bài với ạ. cảm ơn nhiều
\(a,ĐK:x\ne0;x\ne5\\ B=\dfrac{x^2-25+2x^2-12x-x^2+8x+25}{2x\left(x-5\right)}=\dfrac{2x\left(x-2\right)}{2x\left(x-5\right)}=\dfrac{x-2}{x-5}\\ b,x=3\Leftrightarrow A=\dfrac{3+6}{5-3}=\dfrac{9}{2}\\ c,\text{Câu a}\\ d,E=B-A=\dfrac{x-2}{x-5}+\dfrac{x+6}{x-5}=\dfrac{2x+4}{x-5}=\dfrac{2\left(x-5\right)+14}{x-5}=2+\dfrac{14}{x-5}\in Z\\ \Leftrightarrow x-5\inƯ\left(14\right)=\left\{-14;-7;-2;-1;1;2;7;14\right\}\\ \Leftrightarrow x\in\left\{-9;-2;3;4;6;7;12;19\right\}\)
\(2,\\ a,=2x^2+4x-3x-6-2x^2-4x-2=-3x-8\\ b,=\left[x-2+2\left(x+1\right)\right]^2=\left(x-2+2x+2\right)^2=9x^2\)
Bài 1:
a) \(\Leftrightarrow x^2-8x+16-x^2+4=6\\ \Leftrightarrow-8x=-14\\ \Leftrightarrow x=\dfrac{7}{4}\)
b) \(\Leftrightarrow\left(x^2-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)^2\left(x+1\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
c) \(\Leftrightarrow\left[{}\begin{matrix}3x-1=x+2\\3x-1=-x-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=3\\4x=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
Bài 2:
a) \(=5\left(x^2-2xy+y^2-4z^2\right)=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]=5\left(x-y-2z\right)\left(x-y+2z\right)\)
b) \(=\left(x+1\right)^3-\left(3z\right)^3=\left(x-3z+1\right)\left[\left(x+1\right)^2+3z\left(x+1\right)+\left(3z\right)^2\right]=\left(x-3z+1\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)
c) \(=x\left(x^2-16\right)-15x\left(x-4\right)=x\left(x+4\right)\left(x-4\right)-15x\left(x-4\right)=\left(x-4\right)\left(x^2+4x-15x\right)=\left(x-4\right)\left(x^2-11x\right)=x\left(x-4\right)\left(x-11\right)\)
1)
a) 4y2-4xy+x2= x2-4xy+4y2= (x-2y)2
b) 9x2-12xy+4y2= (3x)2-2.3x.2y+(2y)2= (3x-2y)2
c) 16x2-25=(4x)2-52= (4x-5)(4x+5)
d) 1-9y2= 12-(3y)2=(1-3y)(1+3y)
g) x3-27y3= (x-3y)(x2+3xy+9y2)
h) 64 + 8x3=(4+2x)(16+8x+4x2)
Câu 2:
a) Ta có: \(-7x+21< 0\)
\(\Leftrightarrow-7x< -21\)
hay x>3
Vậy: S={x|x>3}
Câu 2:
b) Ta có: x<y
nên -x>-y
\(\Leftrightarrow-x+2021>-y+2021\)
mà \(-y+2021>-y+2020\)
nên -x+2021>-y+2020
hay 2021-x>2020-y