Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Hình 1:
$\tan K=\frac{x}{12}\Rightarrow x=12.\tan K=12.\tan 42^0=10,80$
$\cos K=\frac{12}{y}\Rightarrow y=\frac{12}{\cos K}=\frac{12}{\cos 42^0}=16,15$
Hình 2:
$\cos G=\frac{x}{16}\Rightarrow x=16\cos G=16\cos 35^0=13,11$
$\sin G=\frac{y}{16}\Rightarrow y=16\sin G=16\sin 35^0=9,18$
Hình 3:
$\tan F=\frac{16}{x}$
$\Rightarrow x=\frac{16}{\tan F}=\frac{16}{\tan 55^0}=11,20$
$\sin F=\frac{16}{y}\Rightarrow y=\frac{16}{\sin F}=\frac{16}{\sin 55^0}=19,53$
Hình 1:
Áp dụng tslg:
\(cosK=\dfrac{IK}{MK}\)\(\Rightarrow cos42^0=\dfrac{12}{y}\Rightarrow y\approx16,15\)
\(tanK=\dfrac{IM}{IK}\Rightarrow tan42^0=\dfrac{x}{12}\Rightarrow x\approx10,8\)
Hình 2:
\(sinG=\dfrac{HT}{GT}\Rightarrow sin35^0=\dfrac{y}{16}\Rightarrow y\approx9,18\)
\(cosG=\dfrac{GH}{GT}\Rightarrow cos35^0=\dfrac{x}{16}\Rightarrow x\approx10,11\)
Hình 1:
\(x=12\cdot\tan42^0\simeq10.8\left(cm\right)\)
\(y=\sqrt{10.8^2+12^2}\simeq16,14\left(cm\right)\)
\(a,=3\sqrt{2}-10\sqrt{2}+6\sqrt{2}=-\sqrt{2}\\ b,=10-2\sqrt{21}+2\sqrt{21}=10\\ c,=\dfrac{4\sqrt{5}+4-4\sqrt{5}+4}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}=\dfrac{8}{4}=2\)
Câu 12.
\(5\sqrt{a}+6\sqrt{\dfrac{a}{4}}-a\sqrt{\dfrac{4}{a}}+5\sqrt{\dfrac{4a}{25}}\)
\(=5\sqrt{a}+6\dfrac{\sqrt{a}}{2}-a\cdot\dfrac{2}{\sqrt{a}}+5\dfrac{2\sqrt{a}}{5}\)
\(=5\sqrt{a}+3\sqrt{a}-2\sqrt{a}+2\sqrt{a}\) (vì a>0)
\(=8\sqrt{a}\)
a: Để phương trình có hai nghiệm phân biệt thì
\(1^2-4\cdot1\left(m-2\right)>0\)
=>4(m-2)<1
=>m-2<1/4
hay m<9/4
b: \(\Leftrightarrow3^2-4\cdot\left(-2\right)\left(m-3\right)>0\)
=>9+8(m-3)>0
=>9+8m-24>0
=>8m-15>0
hay m>15/8