K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2021

Hình 1:

Áp dụng tslg:

\(cosK=\dfrac{IK}{MK}\)\(\Rightarrow cos42^0=\dfrac{12}{y}\Rightarrow y\approx16,15\)

\(tanK=\dfrac{IM}{IK}\Rightarrow tan42^0=\dfrac{x}{12}\Rightarrow x\approx10,8\)

Hình 2:

\(sinG=\dfrac{HT}{GT}\Rightarrow sin35^0=\dfrac{y}{16}\Rightarrow y\approx9,18\)

\(cosG=\dfrac{GH}{GT}\Rightarrow cos35^0=\dfrac{x}{16}\Rightarrow x\approx10,11\)

 

Hình 1:

\(x=12\cdot\tan42^0\simeq10.8\left(cm\right)\)

\(y=\sqrt{10.8^2+12^2}\simeq16,14\left(cm\right)\)

NV
27 tháng 7 2021

Gọi O là tâm đường tròn \(\Rightarrow\) O là trung điểm BC

\(\stackrel\frown{BE}=\stackrel\frown{ED}=\stackrel\frown{DC}\Rightarrow\widehat{BOE}=\widehat{EOD}=\widehat{DOC}=\dfrac{180^0}{3}=60^0\)

Mà \(OD=OE=R\Rightarrow\Delta ODE\) đều

\(\Rightarrow ED=R\)

\(BN=NM=MC=\dfrac{2R}{3}\Rightarrow\dfrac{NM}{ED}=\dfrac{2}{3}\)

\(\stackrel\frown{BE}=\stackrel\frown{DC}\Rightarrow ED||BC\) 

Áp dụng định lý talet:

\(\dfrac{AN}{AE}=\dfrac{MN}{ED}=\dfrac{2}{3}\Rightarrow\dfrac{EN}{AN}=\dfrac{1}{2}\)

\(\dfrac{ON}{BN}=\dfrac{OB-BN}{BN}=\dfrac{R-\dfrac{2R}{3}}{\dfrac{2R}{3}}=\dfrac{1}{2}\) 

\(\Rightarrow\dfrac{EN}{AN}=\dfrac{ON}{BN}=\dfrac{1}{2}\) và \(\widehat{ENO}=\widehat{ANB}\) (đối đỉnh)

\(\Rightarrow\Delta ENO\sim ANB\left(c.g.c\right)\)

\(\Rightarrow\widehat{NBA}=\widehat{NOE}=60^0\)

Hoàn toàn tương tự, ta có \(\Delta MDO\sim\Delta MAC\Rightarrow\widehat{MCA}=\widehat{MOD}=60^0\)

\(\Rightarrow\Delta ABC\) đều

NV
27 tháng 7 2021

undefined

19 tháng 8 2021

\(P=\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right):\frac{\sqrt{x}}{x+\sqrt{x}}\)ĐK : x > 0 

\(=\left(\frac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\frac{1}{\sqrt{x}+1}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)

\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)

\(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{x-1}=\frac{x-2\sqrt{x}+1}{x-1}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

19 tháng 8 2021

bạn bổ sung đk hộ mình ý 2 là : \(x\ge0;x\ne1\)nhé 

DD
7 tháng 11 2021

Bài 1: 

Kẻ \(OM\perp AB\)\(OM\)cắt \(CD\)tại \(N\).

Khi đó \(MN=8cm\).

TH1: \(AB,CD\)nằm cùng phía đối với \(O\).

\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (1)

\(R^2=OA^2=OM^2+AM^2=\left(h+8\right)^2+\left(\frac{15}{2}\right)^2\)(2) 

Từ (1) và (2) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{9}{4}\).

TH2: \(AB,CD\)nằm khác phía với \(O\).

\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (3)

\(R^2=OA^2=OM^2+AM^2=\left(8-h\right)^2+\left(\frac{15}{2}\right)^2\)(4)

Từ (3) và (4) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{-9}{4}\)(loại).

DD
7 tháng 11 2021

Bài 3: 

Lấy \(A'\)đối xứng với \(A\)qua \(Ox\), khi đó \(A'\)có tọa độ là \(\left(1,-2\right)\).

\(MA+MB=MA'+MB\ge A'B\)

Dấu \(=\)xảy ra khi \(M\)là giao điểm của \(A'B\)với trục \(Ox\).

Suy ra \(M\left(\frac{5}{3},0\right)\).

17 tháng 8 2021

dạng này dễ mà bạn 

bạn tìm ĐK, đối chiếu giá trị với ĐK thấy thỏa mãn rồi thay vô 

toàn SCP nên tính cũng đơn giản:)

17 tháng 8 2021

1) Thay x = 64 (TMĐK ) vào A, có :

           A = \(\frac{\sqrt{64}}{\sqrt{64}-2}\)=\(\frac{4}{3}\)

     Vậy A = \(\frac{4}{3}\)khi x = 64

2)  Thay x = 36 ( TMĐK ) vào A, có

        A =\(\frac{\sqrt{36}+4}{\sqrt{36}+2}\)=\(\frac{5}{4}\)

     Vậy A =\(\frac{5}{4}\)khi x = 36

3)   Thay x=9 (TMĐK  ) vào A, có :

         A= \(\frac{\sqrt{9}-5}{\sqrt{9}+5}\)=  \(\frac{-1}{4}\)

     Vậy A=\(\frac{-1}{4}\)khi x = 9

4)   Thay x = 25( TMĐK ) vào A có:

         A =\(\frac{2+\sqrt{25}}{\sqrt{25}}\)=\(\frac{7}{5}\)

      Vậy A=\(\frac{7}{5}\) khi x = 25

17 tháng 8 2021

P= (\(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\)) : \(\frac{\sqrt{x}}{x+\sqrt{x}}\)\(\frac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\):\(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)=\(\frac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\).

(\(\sqrt{x}+1\)) =\(\frac{x+\sqrt{x}+1}{\sqrt{x}}\)(ĐKXĐ : x > 0 )

P=\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)=\(\frac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)\(\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)\(\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)=\(\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)=\(\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

(ĐKXĐ: x\(\ge\)0,  x\(\ne\)1)

29 tháng 8 2021

a, \(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)ĐK : \(x\ge0;x\ne1\)

\(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{x-1}=\frac{x-2\sqrt{x}+1}{x-1}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

b, \(B=\frac{3x-4}{x-2\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}}+\frac{\sqrt{x}-1}{2-\sqrt{x}}\)ĐK : \(x>0;x\ne4\)

\(=\frac{3x-4-\left(x-4\right)-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\frac{3x-4-x+4-x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\frac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-2}\)

29 tháng 8 2021

c, \(Q=\frac{3}{\sqrt{a}-3}+\frac{2}{\sqrt{a}+3}+\frac{a-5\sqrt{a}-3}{a-9}\)ĐK : \(a\ge0;a\ne9\)

\(=\frac{3\sqrt{a}+9+2\sqrt{a}-6+a-5\sqrt{a}-3}{a-9}=\frac{a}{a-9}\)

d, \(B=\frac{x}{x-4}-\frac{1}{2-\sqrt{x}}+\frac{1}{\sqrt{x}+2}\)ĐK : \(x\ge0;x\ne4\)

\(=\frac{x}{x-4}+\frac{\sqrt{x}+2}{x-4}+\frac{\sqrt{x}-2}{x-4}=\frac{x+2\sqrt{x}}{x-4}=\frac{\sqrt{x}}{\sqrt{x}-2}\)

25 tháng 8 2021

1, Với \(x\ge0;x\ne25\)

\(A=\frac{\sqrt{x}-5}{\sqrt{x}+5}< \frac{1}{3}\Leftrightarrow\frac{\sqrt{x}-5}{\sqrt{x}+5}-\frac{1}{3}< 0\)

\(\Leftrightarrow\frac{3\sqrt{x}-15-\sqrt{x}-5}{3\left(\sqrt{x}+5\right)}< 0\Leftrightarrow\frac{2\sqrt{x}-20}{3\left(\sqrt{x}+5\right)}< 0\)

\(\Leftrightarrow\sqrt{x}-10< 0\Leftrightarrow x< 100\)Kết hợp với đk vậy \(0\le x< 100;x\ne25\)

2, Với \(x\ge0;x\ne4;9\)

\(P=\frac{\sqrt{x}-2}{\sqrt{x}+1}>0\Rightarrow\sqrt{x}-2>0\Leftrightarrow x>4\)

Vậy \(x>4;x\ne9\)

25 tháng 8 2021

3, Với \(x>0;x\ne9\)

\(P=\frac{x}{\sqrt{x}-2}-1>0\Leftrightarrow\frac{x-\sqrt{x}+2}{\sqrt{x}-2}>0\Leftrightarrow x>4\)

Vậy \(x>4;x\ne9\)

4, Với \(x>0;x\ne1;9\)

\(P=\frac{\sqrt{x}+1}{\sqrt{x}-3}-1< 0\Leftrightarrow\frac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\Rightarrow\sqrt{x}-3< 0\Leftrightarrow x< 9\)

Kết hợp với đk vậy \(0< x< 9;x\ne1\)

3 tháng 9 2021

Bài 2a 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AH^2=BH.CH\Rightarrow CH=\frac{AH^2}{BH}=\frac{256}{25}\)cm 

-> BC = HB + CH = \(25+\frac{256}{25}=\frac{881}{25}\)cm 

Áp dụng định lí Pytago của tam giác ABH vuông tại H 

\(AB=\sqrt{AH^2+HB^2}=\sqrt{881}\)cm 

Áp dụng định lí Pytago tam giác ABC vuông tại A 

\(AC=\sqrt{BC^2-AB^2}=18,9...\)cm 

3 tháng 9 2021

Bài 2c 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : 

\(AH^2=HB.HC=3.4=12\Rightarrow AH=2\sqrt{3}\)cm 

Theo định lí Pytago tam giác AHB vuông tại H

\(AB=\sqrt{AH^2+HB^2}=\sqrt{21}\)cm 

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{12}=\frac{1}{21}+\frac{1}{AC^2}\Rightarrow AC=2\sqrt{7}\)cm