K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Đề mờ quá. Bạn nên gõ hẳn đề ra hoặc chụp rõ hơn để mọi người hỗ trợ tốt hơn nhé.

10 tháng 12 2023

https://hoc24.vn/cau-hoi/.8670566320414

thầy ơi giúp em câu này

21 tháng 8 2021

2b)

xét vế trái ta có

=\(\left(\sqrt{x}-\sqrt{y}\right).\dfrac{\sqrt{x^2y}+\sqrt{xy^2}}{\sqrt{xy}}\) \(\left(\sqrt{x}-\sqrt{y}\right).\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)=x-y

3b)

để A<0 \(\Rightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}}< 0\)

\(\Rightarrow\sqrt{x}-1< 0\)\(\Rightarrow\sqrt{x}< 1\)\(\Rightarrow x< 1\)

a: Ta có: \(\sqrt{9x^2-6x+1}=5\)

\(\Leftrightarrow\left|3x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)

28 tháng 2 2022

Tham khảo:

undefined

CHÚC EM HỌC TỐT NHÁoaoa

25 tháng 2 2022

Gọi thời gian làm riêng để hoàn thành công việc tổ 1 ; 2 lần lượt là a ; b ( a ; b > 0 ) 

Theo bài ra ta có hệ \(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{12}\\\dfrac{9}{a}+\dfrac{1}{2}.\dfrac{10}{b}+\dfrac{9}{b}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{30}\\\dfrac{1}{b}=\dfrac{1}{20}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=30\\b=20\end{matrix}\right.\)(tm)

Vậy ... 

AH
Akai Haruma
Giáo viên
1 tháng 3 2022

Lời giải:
$\Delta'=(m+1)^2-(2m-3)=m^2+4>0$ với mọi $m$ nên pt luôn có 2 nghiệm pb với mọi $m$ 

Áp dụng định lý Viet: 

$x_1+x_2=2(m+1)$

$x_1x_2=2m-3$
Để $x_1<1<x_2$

$\Leftrightarrow (x_1-1)(x_2-1)<0$

$\Leftrightarrow x_1x_2-(x_1+x_2)+1<0$

$\Leftrightarrow 2m-3-2(m+1)+1<0$

$\Leftrightarrow -3-2+1<0$

$\Leftrightarrow -4<0$ (luôn đúng) 

Vậy PT luôn có 2 nghiệm pb thỏa mãn đề với mọi $m\in\mathbb{R}$

28 tháng 2 2022

x2-(m-1)x+m-2=0(1)

Để phương trình có hai nghiệm phân biệt thì Δ=(-m+1)2-4(m-2)

                                                                          =m2-2m+1-4m+8

                                                                          =m2-6m+9

                                                                          =(m-3)2≥0 với mọi m

⇒phương trình luôn có hai nghiệm phân biệt

Áp dụng định lý Vi-ét ta có:\(\begin{cases} x_1+x_2=m-2 \\ x_1.x_2=m-1 \end{cases}\)(2)

TH1:x1,x2 là hai cạnh góc vuông

⇒x1=x2

Từ (2)\(\begin{cases} x_1+x_1=m-2 \\ x_1^2=m-1 \end{cases}\)

\(\Leftrightarrow\)\(\begin{cases} x_1=\frac{m-1}{2}\\ x_1=\sqrt{m-2} \end{cases}\)

\(\Leftrightarrow\)\(\dfrac{m-1}{2}\)=\(\sqrt{m-2}\)

\(\Leftrightarrow\)\(\dfrac{m^2-2m+1}{4}\)=m-2

\(\Leftrightarrow\)m2-6m+9=0

\(\Leftrightarrow\)(m-3)2=0

\(\Leftrightarrow\)m=3

TH2:x1 là cạnh huyền,x2 là cạnh góc vuông

⇒x1=\(\sqrt{2}\)x2

Từ (2)⇒\(\begin{cases} \sqrt{2} x_2+x_2=m-1 \\ \sqrt{2} x_2^2=m-2 \end{cases}\)

\(\Leftrightarrow\)\(\begin{cases} x_2= \frac{m-1}{1+\sqrt{2}} \\ x_2=\sqrt{\frac{m-2}{\sqrt{2}}} \end{cases}\)

\(\Leftrightarrow\)\(\dfrac{m-1}{1+\sqrt{2}}\)=\(\sqrt{\dfrac{m-2}{\sqrt{2}}}\)

\(\Leftrightarrow\)\(\dfrac{m^2-2m+1}{3+2\sqrt{2}}\)=\(\dfrac{m-2}{\sqrt{2}}\)

\(\Leftrightarrow\)\(\left(3+2\sqrt{2}\right)\)\(m\)\(-6-2\sqrt{2}\)\(=\sqrt{2}m^2-2\sqrt{2}m+\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}m^2-\left(4\sqrt{2}+3\right)m+3\sqrt{2}+6=0\)

\(\Leftrightarrow\)rồi m bằng bao nhiêu thì tự giải nhé mệt r

NV
1 tháng 3 2022

\(\Delta=25-4\left(m-1\right)=29-4m>0\Rightarrow m< \dfrac{29}{4}\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m-1\end{matrix}\right.\)

\(2x_1=\sqrt{x_2}\Rightarrow\left\{{}\begin{matrix}x_1;x_2\ge0\\4x_1^2=x_2=5-x_1\end{matrix}\right.\)

\(\Rightarrow4x_1^2+x_1-5=0\Rightarrow\left[{}\begin{matrix}x_1=1\\x_1=-\dfrac{5}{4}< 0\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow x_2=4x_1^2=4\)

Thế vào \(x_1x_2=m-1\Rightarrow m-1=4\Rightarrow m=5\)

a: Thay x=16 vào A, ta được:

\(A=\dfrac{4}{4-3}=4\)

b: Ta có: M=A-B

\(=\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{7}{\sqrt{x}+1}+\dfrac{12}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x+\sqrt{x}-7\sqrt{x}+21+12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-6\sqrt{x}+33}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)