K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2017

A = 1.1 + 2.2 +...+ 100.100

A = 1.(2 - 1) + 2.(3 - 1) +...+ 100.(101 - 1)

A = 1.2 - 1 + 2.3 - 2 +...+ 100.101 - 100

A = (1.2 + 2.3 +... + 100.101) - (1 + 2 +...+ 100)

A = (100.101.102)/3 - (100.101)/2

A = 348450

25 tháng 4 2017

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)\)

\(2A=1-\frac{1}{3^{100}}\)

\(A=\frac{1-\frac{1}{3^{100}}}{2}\)

\(B=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)

\(B=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)

\(B=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+...+\frac{5}{25.28}\)

\(3B=\frac{5.3}{4.7}+\frac{5.3}{7.10}+\frac{5.3}{10.13}+...+\frac{5.3}{25.28}\)

\(3B=5\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{25.28}\right)\)

\(3B=5\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)

\(3B=5\left(\frac{1}{4}-\frac{1}{28}\right)\)

\(3B=5\cdot\frac{3}{14}=\frac{15}{14}\)

\(B=\frac{15}{14}:3=\frac{5}{14}\)

25 tháng 4 2017

a) \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)\)

\(2A=1-\frac{1}{3^{100}}\)

\(\Rightarrow A=\frac{1-\frac{1}{3^{100}}}{2}\)

b)  \(B=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)

\(B=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)

\(B=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+...+\frac{5}{25.28}\)

\(B=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{7}\right)+\frac{5}{3}.\left(\frac{1}{7}-\frac{1}{10}\right)+\frac{5}{3}.\left(\frac{1}{10}-\frac{1}{13}\right)+...+\frac{5}{3}.\left(\frac{1}{25}-\frac{1}{28}\right)\)

\(B=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)

\(B=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{28}\right)\)

\(B=\frac{5}{3}.\frac{3}{14}\)

\(\Rightarrow B=\frac{5}{14}\)

10 tháng 2 2019

a, <=> (3+7+...+97) - (1+5+...+99)

   \(=\left(\frac{97-3}{4}+1\right)\left(\frac{97+3}{2}\right)-\left(\frac{99-1}{4}+1\right)\left(\frac{99+1}{2}\right)\)

1225 - 1275 = -50

b, Tương tự

14 tháng 2 2018

Ta có 2A=\(2^2+2^3+...+2^{101}\)

=>2A-A=A=\(\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)

=> A= \(2^{101}-2\)

Mà \(A+1=2^x\)

=> \(2^x=2^{101}-2^0\)

Bạn xem lại đề nhé mk cx ko rõ nữa 

14 tháng 2 2018

2A=\(2\left(2+2^2+2^3+....+2^{100}\right)\)

2A=\(2^2+2^3+2^4+.....+2^{101}\)

\(2A-A=\left(2^2+2^3+2^4+...2^{101}\right)-\left(2+2^2+2^3+....+2^{100}\right)\)

\(\Rightarrow A=2^{101}-2\)

Vậy A= \(2^{101}-2\)

6 tháng 8 2016

Ta có:
A=1/3 - 2/3^2+3/3^3 - 4/3^4+ ... - 100/3^100
=>3A=1 -2/3 +3/3^2 - 4/3^3+ ... - 100/3^99
=>4A=A+3A=1-1/3+1/3^2-1/3^3+...-1/3^99 - 100/3^100
=>12A=3.4A=3-1+1/3-1/3^2+...-1/3^98 - 100/3^99

=>16A=12A+4A=3-1/3^99-100/3^99-100/3^1...
<=>16A=3-101/3^99-100/3^100
<=>A=3/16-(101/3^99+100/3^100)/16 < 3/16
Suy ra A<3/16

7 tháng 4 2017

ai tk mình đi đang bị âm điểm nè

cảm ơn các bạn nhìu!!!

30 tháng 1 2017

a)

\(D=2^{100}-2^{99}-2^{98}-...-2^3-2^2-2-1\)

\(D=2^{100}-2^{99}-2^{98}-...-2^3-2^2-2-1-1+1\)

\(D=2^{100}-2^{99}-2^{98}-...-2^3-2^2-2-\left(1+1\right)+1\)

\(D=2^{100}-2^{99}-2^{98}-...-2^3-2^2-2-2+1\)

\(D=2^{100}-2^{99}-2^{98}-...-2^3-2^2-\left(2+2\right)+1\)

\(D=2^{100}-2^{99}-2^{98}-...-2^3-2^2-2^2+1\)

..........

Làm tương tự như vậy đến hết, ta có D = 1

Vậy D = 1

b)

\(\frac{1\times3\times5\times...\times39}{21\times22\times23\times...\times40}\)

\(=\frac{\left(1\times3\times5\times...\times19\right)\times\left(21\times23\times...\times39\right)}{\left(22\times24\times...\times40\right)\times\left(21\times23\times...\times39\right)}\)

\(=\frac{1\times3\times5\times...\times19}{22\times24\times...\times40}\)

\(=\frac{1\times3\times5\times7\times3^2\times11\times13\times3\times5\times17\times19}{2\times11\times2^3\times3\times2\times13\times2^2\times7\times2\times3\times5\times2^5\times2\times17\times2^2\times3^2\times2\times19\times2^3\times5}\)

(Phân tích các số ra thừa số nguyên tố)

\(=\frac{1\times3^4\times5^2\times7\times11\times13\times17\times19}{2^{20}\times11\times3^4\times13\times7\times5^2\times17\times19}\)

\(=\frac{1}{2^{20}}\)

Vậy \(\frac{1\times3\times5\times...\times39}{21\times22\times23\times...\times40}=\frac{1}{2^{20}}\)

P/S: Câu b mình không chắc đâu nhé

31 tháng 1 2017

Thanks pạn :))))

25 tháng 11 2021

\(\Rightarrow4A=2^2+2^4+2^6+...+2^{102}\\ \Rightarrow4A-A=2^2+2^4+...+2^{102}-1-2^2-2^4-...-2^{100}\\ \Rightarrow3A=2^{102}-1\\ \Rightarrow A=\dfrac{2^{102}-1}{3}\)

27 tháng 11 2021

A= 1 + 2\(^2\) + 2\(^4\) +...+ 2\(^{100}\)

⇔2\(^2\)A=2\(^2\)+2\(^4\)+2\(^6\)+2\(^8\)+....+2\(^{100}\)+2\(^{102}\)

⇔4A−A=(2\(^2\)+2\(^4\)+2\(^6\)+2\(^8\)+....+2\(^{100}\)+2\(^{102}\)) − (1+2\(^2\)+2\(^4\)+2\(^6\)+....+2\(^{98}\)+2\(^{100}\))

⇔3A=2\(^{102}\)−1

⇔S=\(\dfrac{2^{102}-1}{3}\)

 

19 tháng 9 2018

a ) 2 + 4 + 6 + 8 + ........2018

Dãy trên có số số hạng là :

( 2018 - 2 ) : 2 + 1 = 1009 ( số hạng )

Giá trị của dãy trên là :

( 2018 + 2 ) . 1009 : 2 = 1019090

b ) S = 21 + 22 + 23 + ....... + 2100

=> 2S = 22 + 23 + 24 + ... + 2101

=> 2S - S = S =  22 + 23 + ....... + 2101 - 2 - 22 - 23 - 24 - ... - 2100

=> S = 2101 - 2

a) Số số hạng của dãy : ( 2018 - 2 ) : 2 + 1 = 1009

Tổng của dãy là : ( 2018 + 2 ) . 1009 : 2 = 1019090

b) S = 2+ 2+ 2 +...+ 2100

2S = 2+ 23 + 24 +... + 2101

2S - S = 2101 - 2

S = 2 ( 2100 -1 )