Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Xét ΔBHA vuông tại H và ΔBHD vuông tại H có
BH chung
HA=HD
Do đó: ΔBHA=ΔBHD
b: Ta có: ΔBHA=ΔBHD
nên \(\widehat{ABH}=\widehat{DBH}\)
hay BH là tia phân giác của góc ABD
Bài 4:
Diện tích xung quanh của hình hộp chữ nhật là:
\(\left(EH+CD\right)\cdot2\cdot EA=\left(8+6\right)\cdot2\cdot7=196\left(cm^2\right)\)
Thể tích của hình hộp chữ nhật là:
\(EA\cdot EH\cdot CD=7\cdot8\cdot6=336\left(cm^3\right)\)
1. Do góc BOC kề bù với góc AOB
=> Tia OA và tia OC đối nhau
Do góc AOD và góc AOB kề bù
=> tia OD và tia OB đối nhau
=> góc BOC và góc AOD là 2 góc đối đỉnh
Gọi OM, ON là 2 tia phân giác góc AOD và góc BOC
=> góc AOM = 1/2 góc AOD = 1/2 (180* - 135*) = 45*/2
mà góc AON = góc AOB + góc BON
=> góc AON = 135* + 45*/2
=> góc AOM + góc AON = 135* + 45*/2 + 45*/2 = 180*
=> góc MON = 180*
=> OM , ON là 2 tia đối nhau
Vì tam giác \(ABC\)đều nên trung trực của \(AC\)cũng là trung tuyến của \(AC\)nên \(O\)là trọng tâm của tam giác \(ABC\)
Suy ra \(OA=\frac{2}{3}AM\).
Tam giác \(ABC\)đều nên \(AM\perp BC\).
Theo định lí Pythagore:
\(AC^2=AM^2+MC^2\)
\(\Leftrightarrow AM^2=AC^2-MC^2=10^2-5^2=75\)
\(\Leftrightarrow AM=5\sqrt{3}\left(cm\right)\).
\(OA=\frac{2}{3}AM=\frac{10\sqrt{3}}{3}\left(cm\right)\).
Bài 1. Điền kí hiệu ( ∈,⊂, ∉) thích hợp vào ô vuông
– 3 ∉ N – 3 ∈ Z -3 ∈ Q
-2/3 ∉ Z -2/3 ∈ Q N ⊂ Z ⊂ Q
Bài 2 trang 7. Trong các phân số sau, những phân số nào biểu diễn số hữu tỉ 3/-4
bài 3
hD Giải: a) x= 2/-7 = -22/7;y = -3/11= -21/77
Vì -22 < -21 và 77> 0 nên x <y
b)Vì -216 < -213 và 300 > 0 nên y < x
c) x = -0,75 = -75/100 = -3/4; y = -3/4
Vậy x=y
Bài 4. So sánh số hữu tỉ a/b ( a,b ∈ Z, b # 0) với số 0 khi a, b cùng dấu và khi a, b khác dấu
HD giải: Với a, b ∈ Z, b> 0
– Khi a , b cùng dấu thì a/b > 0
– Khi a,b khác dấu thì a/b < 0
Tổng quát: Số hữu tỉ a/b ( a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0
\(x=\hept{\begin{cases}\frac{13}{11}\\\frac{-13}{11}\end{cases}}\)
có 2 cách bạn ạ
Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó:
Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2
a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
…………………..
an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)
Cộng từng vế của các đẳng thức trên ta có:
3(a1 + a2 + … + an) = n(n + 1)(n + 2)
học tốt
cách 2
Ta có
3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2)
* Tổng quát hoá ta có:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …
Ta dễ dàng chứng minh công thức trên như sau:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)
tham khảo trên mạng có cả !!
a) \(\Rightarrow\dfrac{7}{3}+x=\dfrac{5}{6}\Rightarrow x=-\dfrac{3}{2}\)
b) \(\Rightarrow\dfrac{5}{2}x-\dfrac{3}{2}-\dfrac{1}{10}=x-3\)
\(\Rightarrow\dfrac{3}{2}x=-\dfrac{7}{5}\Rightarrow x=-\dfrac{14}{15}\)