K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2018

A B C D P Q O I E

a) Ta có: Đường tròn (O;R) có đường kính CD và điểm A nằm trên cung CD => ^CAD=900

=> ^PAQ=900 => \(\Delta\)APQ vuông tại A

Do PQ là tiếp tuyến của (O) tại B => AB là đường cao của \(\Delta\)APQ

=> ^PAB=^AQP (Cùng phụ ^APQ) hay ^CAO=^DQP

Mà \(\Delta\)AOC cân tại O => ^CAO=^ACO => ^DQP=^ACO

Lại có: ^ACO+^PCD=1800 => ^DQP+^PCD=1800

=> Tứ giác CPQD nội tiếp đường tròn (đpcm).

b) Xét \(\Delta\)APQ vuông tại A: Có đường trung tuyến AI => \(\Delta\)AIQ cân tại I

=>  ^IAQ=^IQA hay ^IAQ=^DQP => ^IAQ=^ACO (Do ^DQP=^ACO)

Hay ^IAQ=^ACD. Mà ^IAQ+^CAI=900 => ^ACD+^CAI=900 

=> AI vuông góc với CD (đpcm).

c) Ta thấy tứ giác CPQD nội tiếp đường tròn

=> 4 đường trung trực của CP;CD;DQ;PQ cắt nhau tại 1 điểm (1)

E là tâm đường tròn ngoại tiếp \(\Delta\)CPQ => Trung trực của CP và CD cắt nhau tại E (2)

Từ (1) và (2) => Điểm E nằm trên trung trực của PQ.

Lại có: I là trung điểm PQ => E là điểm cách PQ 1 khoảng bằng đoạn EI (*)

AB vuông góc PQ; EI cũng vuông góc PQ => AB//EI hay AO//EI (3)

E thuộc trung trực CD; O là trung điểm CD => OE vuông góc CD.

Mà AI vuông góc CD => OE//AI (4)ư

Từ (3) và (4) => Tứ giác AOEI là hình bình hành => AO=EI (**)

Từ (*) và (**) => E là điểm cách PQ 1 khoảng bằng đoạn AO

Mà AO là bk của (O); PQ là tiếp tuyến của (O) tại B

Nên ta có thể nói: Điểm E là điểm cách tiếp tuyến của (O) tại B một khoảng bằng độ dài bán kính của (O)

Vậy khi đường kính CD thay đổi thì điểm E di động trên đường thẳng song song với tiếp tuyến tại B của đường tròn (O) và cách (O) 1 khoảng bằng độ dài bk của (O).

29 tháng 3 2021

Giải chi tiết:

1) Chứng minh tứ giác MCDN nội tiếp.

Xét (O;R)(O;R) ta có: AB,CDAB,CD là hai đường kính của hình tròn

⇒ADBC⇒ADBC là hình bình hành (hai đường chéo cắt nhau tại trung điểm của mỗi đường).

⇒{AC=BDAD=BC⇒{AC=BDAD=BC  (các cạnh đối).

Ta có: ∠ADB=900∠ADB=900 (góc nội tiếp chắn nữa đường tròn)

⇒∠BDN=900(1)⇒∠BDN=900(1)

Ta có: ∠CMN∠CMN là góc có đỉnh nằm ngoài đường tròn chắn các cung

BCBC và AB.AB.

⇒∠CMN=12(sdcungAB−sdcungCB)=12sdcungBD=12sdcungAC.(doAC=BD)⇒∠CMN=12(sdcungAB−sdcungCB)=12sdcungBD=12sdcungAC.(doAC=BD)

Lại có: ∠ADC∠ADC là góc nội tiếp chắn cung AC⇒∠ADC=12sdcungACAC⇒∠ADC=12sdcungAC

⇒∠ADC=∠CMN(=12sdcungAC).⇒∠ADC=∠CMN(=12sdcungAC).

⇒CDNM⇒CDNM là tứ giác nội tiếp (góc ngoài tại 1 đỉnh bằng góc trong tại đỉnh đối diện). (đpcm)

2) Chứng minh AC.AM=AN.AN.AC.AM=AN.AN.

 Xét   ΔACDΔACD và ΔANMΔANM ta có:

∠CADchung∠AMB=∠ADC(cmt)⇒ΔACD∼ΔANM(g−g)⇒ACAN=ADAM⇒AC.AM=AN.AD(dpcm).∠CADchung∠AMB=∠ADC(cmt)⇒ΔACD∼ΔANM(g−g)⇒ACAN=ADAM⇒AC.AM=AN.AD(dpcm).

3) Gọi I là tâm đường tròn nội tiếp tứ giác MCDN và H là trung điểm MN. Chứng minh tứ giác AOIH là hình bình hành. Khi đường kính CD quay quanh điểm O thì I di động trên đường nào?

Ta có I  là tâm đường tròn nội tiếp tứ giác MCDN, H là trung điểm của MN

 ⇒IH⊥MN⇒IH⊥MN  (mối quan hệ giữa đường kính và dây cung).

Mà AO⊥MNAO⊥MN (do AB là đường kính của đường tròn (O), MN là tiếp tuyến tại B của đường tròn)

⇒HI//AO(⊥MN)(1)⇒HI//AO(⊥MN)(1)

Mặt khác ta có ∠CAD=900∠CAD=900 (góc nội tiếp chắn nửa đường tròn)

⇒∠ACD+∠CDA=900⇒∠ACD+∠CDA=900 (tổng hai góc nhọn trong tam giác vuông)

Xét ΔMANΔMAN có ∠MAN=900∠MAN=900, H là trung điểm của MN

⇒AH=12MN=MH⇒AH=12MN=MH (đường trung tuyến ứng với cạnh huyền của tam giác vuông)

⇒ΔAHM⇒ΔAHM cân tại H (dhnb)

⇒∠MAH=∠HMA⇒∠MAH=∠HMA  (hai góc kề đáy của tam giác cân).

Lại có : ∠ACD=∠CAB∠ACD=∠CAB (hai góc nội tiếp chắn hai cung AD, CB bằng nhau).

Mà : ∠AMH+∠CAB=900∠AMH+∠CAB=900 (tam giác ABM vuông tại B)

⇒∠MAH+∠ACD=900⇒ΔCAK⇒∠MAH+∠ACD=900⇒ΔCAK  vuông tại K⇒CD⊥AH={K}.K⇒CD⊥AH={K}.

Lại có : OI⊥CDOI⊥CD (mối quan hệ giữa đường kính và dây cung)

⇒AH//OI(⊥CD).(2)⇒AH//OI(⊥CD).(2)

Từ (1) và (2) ta có :  {AH//OIAO//HI⇒AOIH{AH//OIAO//HI⇒AOIH là hình bình hành (dhnb). (đpcm)

Ta có : HH  là trung điểm của MN,M,NMN,M,N thuộc đườn thẳng xyxy cố định ⇒H⇒H là điểm di động trên đường xy.xy.

Vì AOIHAOIH là hình bình hành (cmt) ⇒AO=IH⇒AO=IH  (hai cạnh đối)

Mà AO=RAO=R không đổi ⇒IH=R⇒IH=R không đổi.

⇒I⇒I là điểm di động trên đườgn thẳng song song với đường thẳng xy.xy.

4) Khi góc AHB bằng 600; Tính diện tích xung quanh của hình trụ tạo thành khi hình bình hành AHOI quay quanh cạnh AH theo R.

Ta có : ∠AHB=600⇒∠OAH=300∠AHB=600⇒∠OAH=300

Khi quay hình bình hành AHIO một vòng quanh cạnh AH thì cạnh AO và cạnh HI  tạo nên hai hình nón bằng nhau có đường sinh AO=IH=R.AO=IH=R.

Cạnh OI  tạo nên hình trụ có bán kính đáy bằng bán kính đáy của hình nón cũng như bán kính của hình tròn (O)(O) là R.R.

Gọi P, Q  là tâm các đường tròn đáy của hình trụ.

Xét ΔAOPΔAOP ta có : ∠OPA=900,∠OAP=300.∠OPA=900,∠OAP=300.

⇒sin300=OPOA=OPR⇒OP=Rsin300=R2.⇒sin⁡300=OPOA=OPR⇒OP=Rsin⁡300=R2.

Xét ΔABHΔABH ta có : AH=ABtan600=2R√3=2R√33.AH=ABtan⁡600=2R3=2R33.

Diện tích xung quanh hình trụ cần tính là : Sxq=2πrh=2π.OP.AH=2π.R2.2R√33=2πR2√33.

29 tháng 3 2021

DÀI V SAO GHI HẾT ?