K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3

                        Giải:

Gọi số học sinh của mỗi nhóm lần lượt là: \(x;y;z\) (học sinh); \(x;y;z\)\(\in\)N*

Theo bài ra ta có:

     4\(x\)  = 6y = 12z và \(x+y+z\) = 42 

    4\(x\) = 6y ⇒ \(x\) = \(\dfrac{6}{4}\)y= \(\dfrac{3}{2}y\); 6y = 12z ⇒ z = \(\dfrac{6y}{12}\) = \(\dfrac{1}{2}\) y 

Thay \(x=\)\(\dfrac{3}{2}y\);   z = \(\dfrac{1}{2}y\) vào biểu thức:   \(x+y+z\) = 42 ta có:

      \(\dfrac{3}{2}y+y+\dfrac{1}{2}y=42\)

      y.(\(\dfrac{3}{2}+1+\dfrac{1}{2}\)) =  42

      y.3 = 42

      y    = 42 : 3

      y = 14 (1)

thay y = 1 vào biểu thức: \(x\) = \(\dfrac{3}{2}y\) ⇒ \(x\) = 14.\(\dfrac{3}{2}=21\) (2)

Thay y = 14 vào biểu thức z = \(\dfrac{1}{2}y=\) 14.\(\dfrac{1}{2}\) = 7  (3)

Từ (1); (2); (3) ta có: \(\left(x;y;z\right)\) = (21; 14; 7)

Kết luận số học sinh tổ 1;tổ 2; tổ 3 lần lượt là: 21học sinh; 14 học sinh; 7 học sinh. 

 

 

 

25 tháng 3

Gọi a (học sinh), b (học sinh), c (học sinh) lần lượt là số học sinh của nhóm I, nhóm II, nhóm III (a, b, c ∈ ℕ*)

Do năng suất trồng cây của mỗi học sinh là như nhau và cùng trồng một số cây như nhau nên số học sinh và số ngày hoàn thành là hai đại lượng tỉ lệ nghịch

⇒ 4a = 6b = 12c

⇒ a/3 = b/2 = c/1

Do tổng số học sinh là 42 nên a + b + c = 42

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

a/3 = b/2 = c/1 = (a + b + c)/(3 + 2 + 1) = 42/6 = 7

a/3 = 7 ⇒ a = 7.3 = 21 (nhận)

b/2 = 7 ⇒ b = 7.2 = 14 (nhận)

c/1 = 7 ⇒ c = 7.1 = 7 (nhận)

Vậy số học sinh của nhóm I, nhóm II, nhóm III lần lượt là: 21 học sinh, 14 học sinh, 7 học sinh

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Lời giải:

a. Với $n$ nguyên khác -3, để $B$ nguyên thì:

$2n+9\vdots n+3$

$\Rightarrow 2(n+3)+3\vdots n+3$

$\Rightarrow 3\vdots n+3$

$\Rightarrow n+3\in\left\{\pm 1; \pm 3\right\}$

$\Rightarrow n\in\left\{-2; -4; 0; -6\right\}$

b. 

$B=\frac{2n+9}{n+3}=\frac{2(n+3)+3}{n+3}=2+\frac{3}{n+3}$

Để $B_{\max}$ thì $\frac{3}{n+3}$ max

Điều này đạt được khi $n+3$ là số nguyên dương nhỏ nhất

Tức là $n+3=1$

$\Leftrightarrow n=-2$

c. Để $B$ min thì $\frac{3}{n+3}$ min

Điều này đạt được khi $n+3$ là số nguyên âm lớn nhất 

Tức là $n+3=-1$

$\Leftrightarrow n=-4$

7 tháng 9 2017

\(\left|x+1\right|và\left|x+2\right|\ge0\)

\(\Rightarrow\orbr{\begin{cases}\left(x+1\right)+\left(x+2\right)=3\\\left(x+1\right)+\left(x+2\right)=-3\end{cases}}\)

\(\orbr{\begin{cases}2x+3=3\\2x+3=-3\end{cases}}\)

\(\orbr{\begin{cases}2x=0\\2x=-6\end{cases}}\)

\(\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)

7 tháng 9 2017

\(\left|x+1\right|+\left|x+2\right|=3\)

Xét \(x+1\ge0;x+2\ge0\Leftrightarrow x\ge-1;x\ge-2\Rightarrow x\ge-1\) ta có : \(\hept{\begin{cases}\left|x+1\right|=x+1\\\left|x+2\right|=x+2\end{cases}}\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|=3\Leftrightarrow x+1+x+2=3\Leftrightarrow2x+3=3\Rightarrow x=0\)(TM)

Xét \(x+1\le0;x+2\ge0\Leftrightarrow-2\le x\le-1\) ta có : \(\hept{\begin{cases}\left|x+1\right|=-x-1\\\left|x+2\right|=x+2\end{cases}}\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|=3\Leftrightarrow-x-1+x+2=3\Leftrightarrow1=3\) (loại)

Xét \(x+1\le0;x+2\le0\Leftrightarrow x\le-1;x\le-2\Leftrightarrow x\le-2\) ta có : \(\hept{\begin{cases}\left|x+1\right|=-x-1\\\left|x+2\right|=-x-2\end{cases}}\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|=-x-1-x-2=-2x-3=3\Rightarrow x=-3\)(TM)

Vậy \(x=\left\{-3;0\right\}\)

27 tháng 6 2018

Để M là số nguyên

Thì (x2–5) chia hết cho (x2–2)

==>(x2–2–3) chia hết cho (x2–2)

==>[(x2–2)—3] chia hết cho (x2–2)

Vì (x2–2) chia hết cho (x2–2)

Nên 3 chia hết cho (x2–2)

==> (x2–2)€ Ư(3)

==> (x2–2) €{1;-1;3;-3}

TH1: x2–2=1

x2=1+2

x2=3

==> ko tìm được giá trị của x

TH2: x2–2=-1

x2=-1+2

x2=1

12=1

==>x=1

TH3: x2–2=3

x2=3+2

x2=5

==> không tìm được giá trị của x

TH4: x2–2=-3

x2=-3+2

x2=-1

(-1)2=1

==> x=-1

Vậy x € {1;—1)

22 tháng 7 2017

Ta có :   \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}\)

\(\Rightarrow\frac{x\times y}{\frac{1}{3}\times\frac{1}{5}}=\frac{1500}{\frac{1}{15}}=22500\)

\(\Rightarrow\frac{x}{\frac{1}{3}}=22500\Rightarrow x=22500\times\frac{1}{3}=7500\)

\(\Rightarrow\frac{y}{\frac{1}{5}}=22500\Rightarrow y=22500\times\frac{1}{5}=4500\)

22 tháng 7 2017

bạn ơi x* y =1500 mà

19 tháng 9 2021

\(\dfrac{x}{y}=\dfrac{6}{5}\)\(\dfrac{x}{6}=\dfrac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{6}=\dfrac{y}{5}=\dfrac{x+y}{6+5}=\dfrac{121}{11}=11\)

\(x=66;y=55\)

19 tháng 9 2021

các bạn giải rõ giúp mik nha! rùi mik tik cho, :3

 

1 tháng 8 2019

\(Q\left(x\right)-P\left(x\right)=0\)

\(\Leftrightarrow\left(-6x^2+x^3-8+12\right)-\left(x^3-3x^2+6x-8\right)=0\)

\(\Leftrightarrow\left(-6x^2+x^3+4\right)-\left(x^3-3x^2+6x-8\right)=0\)

\(\Leftrightarrow-6x^2+x^3+4-x^3+3x^2-6x+8=0\)

\(\Leftrightarrow-3x^2-6x+12=0\)

\(\Leftrightarrow-3\left(x^2+2x-4\right)=0\)

\(\Leftrightarrow x^2+2x-4=0\)

\(\Leftrightarrow x^2+2x+1=5\)

\(\Leftrightarrow\left(x+1\right)^2=5\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=\sqrt{5}\\x+1=-\sqrt{5}\end{cases}}\Leftrightarrow x=\pm\sqrt{5}-1\)

1 tháng 8 2019

\(P\left(x\right)-Q\left(x\right)=\left(x^3-3x^2+6x-8\right)-\left(-6x^2+x^3-8+12\right)\)

\(P\left(x\right)-Q\left(x\right)=\left(x^3-3x^2+6x-8\right)-\left(-6x^2+x^3+4\right)\)

\(P\left(x\right)-Q\left(x\right)=x^3-3x^2+6x-8+6x^2-x^3-4\)

\(P\left(x\right)-Q\left(x\right)=3x^2+6x-4\)

Ta cần phân tích \(3x^2+6x-4\) thành nhân tử

Ta có:\(P\left(x\right)-Q\left(x\right)=-\frac{1}{3}\left(-9x^2-18x+12\right)\)

\(=-\frac{1}{3}\left[21-\left(9x^2+18x+9\right)\right]\)

\(=-\frac{1}{3}\left[21-\left(3x+3\right)^2\right]\)

\(=-\frac{1}{3}\left(\sqrt{21}-3x-3\right)\left(\sqrt{21}+3x+3\right)\)

\(\Rightarrow x=\frac{\sqrt{21}-3}{3};x=\frac{-\sqrt{21}-3}{3}\)

17 tháng 12 2021

a, Vì \(\left\{{}\begin{matrix}AN=NC\\\widehat{AND}=\widehat{BNC}\left(đối.đỉnh\right)\\BN=ND\end{matrix}\right.\) nên \(\Delta AND=\Delta CNB\left(c.g.c\right)\)

Do đó \(AD=BC\)

b, Vì \(\left\{{}\begin{matrix}AM=MB\\\widehat{AME}=\widehat{BMC}\left(đối.đỉnh\right)\\EM=MC\end{matrix}\right.\) nên \(\Delta AME=\Delta BMC\left(c.g.c\right)\)

Do đó \(\widehat{MAE}=\widehat{MBC}\) mà 2 góc này ở vị trí so le trong nên AE//BC

c, Vì \(\widehat{NAD}=\widehat{NCB}\left(\Delta AND=\Delta CNB\right)\) mà 2 góc này ở vị trí slt nên AD//BC

Mà AE//BC nên A,D,E thẳng hàng

Ta có \(AE=BC\left(\Delta AME=\Delta BMC\right)\)

Mà \(AD=BC\left(cmt\right)\) nên \(AD=AE\)

Vậy A là trung điểm DE