K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2020

a,\(\left(x^2+x\right)2+3\left(x^2+x\right)+2\)

=\(\left(x^2+x\right)6+2\)

b,\(\left(x^2+x\right)2-2\left(x^2+x\right)-15\)

=\(-4\left(x^2+x\right)-15\)

c,\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

=\(\left(x^2+x+1\right)\left(x^2+x+1\right)+1-12\)

=\(\left(x^2+x+1\right)^2-11\)

d,\(\left(x^2+x\right)2+4x^2+4x-12\)

=\(x\left(x+1\right)2+2x\left(x+1\right)-12\)

=\(2x\left(x+1\right)+2x\left(x+1\right)-12\)

=\(\left(x+1\right)\left(2x+2x-12\right)\)

= \(\left(x+1\right)\left(4x-12\right)=4\left(x+1\right)\left(x-3\right)\)

e,\(\left(x^2+2x\right)2+9x^2+18x+20\)

=\(x\left(x+2\right)2+9x\left(x+2\right)+20\)

=\(2x\left(x+2\right)+9x\left(x+2\right)+20=\left(x+2\right)\left(2x+9x+20\right)\)

=\(\left(x+2\right)\left(11x+20\right)\)

25 tháng 8 2020

thực ra mk cx ko chắc là đúng hết nha

14 tháng 8 2020

4x3 - 13x2 + 9x - 18

= 4x3 - 12x2 - x2 + 3x + 6x - 18

= 4x2(x - 3) - x(x - 3) + 6(x - 3)

= (x - 3)(4x2 - x + 6)

x2 + 5x - 6

= x2 + 2x + 3x - 6

= x(x + 2) - 3(x + 2)

= (x + 2)(x - 3)

x3 + 8x2 + 17x + 10

= x3 + x2 + 7x2 + 7x + 10x + 10

= x2(x + 1) + 7x(x + 1) + 10(x + 1)

= (x + 1)(x2 + 7x + 10)

= (x + 1)(x2 + 5x + 2x + 10)

= (x + 1)[ x(x + 5) + 2(x + 5)]

= (x + 1)(x + 5)(x + 2)

x3 + 3x2 + 6x + 4

= x3 + 3x2 + 3x + 1 + 3x + 3

= (x + 1)3 + 3(x + 1)

= (x + 1)[(x + 1)2 + 3]

= (x + 1)(x2 + 2x + 1 + 3)

= (x + 1)(x2 + 2x + 4)

2x3 - 12x2 + 17x - 2

= 2x3 - 8x2 - 4x2 + x + 16x - 2

= (2x3 - 8x2 + x) - (4x2 - 16x + 2)

= x(2x2 - 8x + 1) - 2(2x2 - 8x + 1)

= (2x2 - 8x + 1)(x - 2)

15 tháng 8 2020

Cảm ơn nhiều ạ

28 tháng 4 2022

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y+1\right)\left(x+y-6\right)=0\\y-x-3=0\left(3\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=-\left(y+1\right)\left(1\right)\\x=6-y\left(2\right)\end{matrix}\right.\\y-x-3=0\left(3\right)\end{matrix}\right.\)

\(thế\left(1\right)\left(2\right)vào\left(3\right)\Rightarrow\left(x;y\right)\)

AH
Akai Haruma
Giáo viên
27 tháng 8 2020

d)

$(x^2+x)^2+4x^2+4x-12$

$=(x^2+x)^2+4(x^2+x)-12$

$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$

$=(x^2+x)(x^2+x-2)+6(x^2+x-2)$

$=(x^2+x+6)(x^2+x-2)=(x^2+x+6)(x+2)(x-1)$

e)

$(x^2+2x)^2+9x^2+18x+20$

$=(x^2+2x)^2+9(x^2+2x)+20$

$=(x^2+2x)^2+4(x^2+2x)+5(x^2+2x)+20$

$=(x^2+2x)(x^2+2x+4)+5(x^2+2x+4)$

$=(x^2+2x+4)(x^2+2x+5)$

AH
Akai Haruma
Giáo viên
27 tháng 8 2020

a)

$(x^2+x)^2+3(x^2+x)+2$

$=(x^2+x)^2+(x^2+x)+2(x^2+x)+2$

$=(x^2+x)(x^2+x+1)+2(x^2+x+1)=(x^2+x+1)(x^2+x+2)$

b)

$(x^2+x)^2-2(x^2+x)-15$

$=(x^2+x)^2+3(x^2+x)-5(x^2+x)-15$

$=(x^2+x)(x^2+x+3)-5(x^2+x+3)$

$=(x^2+x+3)(x^2+x-5)$

c)

$(x^2+x+1)(x^2+x+2)-12=(x^2+x+1)^2+(x^2+x+1)-12$

$=(x^2+x+1)^2-3(x^2+x+1)+4(x^2+x+1)-12$

$=(x^2+x+1)(x^2+x+1-3)+4(x^2+x+1-3)$

$=(x^2+x+1-3)(x^2+x+1+4)=(x^2+x-2)(x^2+x+5)$

$=[x(x-1)+2(x-1)](x^2+x+5)=(x+2)(x-1)(x^2+x+5)$

a) Ta có: \(x^4+4\)

\(=\left(x^2\right)^2+2\cdot x^2\cdot2+4-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

b) Ta có: \(x^4+64\)

\(=\left(x^2\right)^2+8^2+16x^2-16x^2\)

\(=\left(x^2+8\right)^2-\left(4x\right)^2\)

\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)

c) Ta có: \(64x^4+y^4\)

\(=\left(8x^2\right)^2+\left(y^2\right)^2+16x^2y^2-16x^2y^2\)

\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)

\(=\left(8x^2-4xy+y^2\right)\left(8x^2+4xy+y^2\right)\)

d) Ta có: \(x^3-x^2-4\)

\(=x^3+x^2+2x-2x^2-2x-4\)

\(=x\left(x^2+x+2\right)-2\left(x^2+x+2\right)\)

\(=\left(x^2+x+2\right)\left(x-2\right)\)

e) Ta có: \(x^3-7x-6\)

\(=x^3-x-6x-6\)

\(=x\left(x^2-1\right)-6\left(x+1\right)\)

\(=x\left(x+1\right)\left(x-1\right)-6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x-6\right)\)

\(=\left(x+1\right)\left(x^2-3x+2x-6\right)\)

\(=\left(x+1\right)\left(x-3\right)\left(x+2\right)\)

f) Ta có: \(x^4+x^2+1\)

\(=x^4+2x^2+1-x^2\)

\(=\left(x^2+1\right)^2-x^2\)

\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\)

=x^3(x+1)+x+1

=(x+1)(x^3+1)

=(x+1)^2(x^2-x+1)

12 tháng 6 2023

cảm ơn rất nhiều ạ