K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 13:

a: \(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)

=>\(4x^2+4x+1-4\left(x^2+4x+4\right)=9\)

=>\(4x^2+4x+1-4x^2-16x-16=9\)

=>-12x-15=9

=>-12x=24

=>x=-2

b: \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)

=>\(x^2+6x+9-\left(x^2+8x-4x-32\right)=1\)

=>\(x^2+6x+9-\left(x^2+4x-32\right)=1\)

=>\(x^2+6x+9-x^2-4x+32=1\)

=>2x+41=1

=>2x=-40

=>x=-20

c: \(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right)\left(x-3\right)=36\)

=>\(3\left(x^2+4x+4\right)+4x^2-4x+1-7\left(x^2-9\right)=36\)

=>\(3x^2+12x+12+4x^2-4x+1-7x^2+63=36\)

=>8x+76=36

=>8x=-40

=>x=-5

d: \(\left(3x-2\right)^2=\left(5-2x\right)^2\)

=>\(\left(3x-2\right)^2-\left(2x-5\right)^2=0\)

=>(3x-2-2x+5)(3x-2+2x-5)=0

=>(x+3)(5x-7)=0

=>\(\left[\begin{array}{l}x+3=0\\ 5x-7=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-3\\ x=\frac75\end{array}\right.\)

Bài 12:

a: \(A=27+\left(x-3\right)\left(x^2+3x+9\right)=27+x^3-27=x^3\)

Khi x=-2 thì \(A=\left(-2\right)^3=-8\)

c: \(C=\left(x+y\right)^2+\left(x-y\right)^2-2\left(x+y\right)\left(x-y\right)\)

\(=\left(x+y-x+y\right)^2=\left(2y\right)^2=4y^2\)

Khi y=-2 thì \(C=4\cdot\left(-2\right)^2=4\cdot4=16\)

h: \(H=x^3-y^3-3xy\)

\(=\left(x-y\right)^3+3xy\left(x-y\right)-3xy=1^3+3xy-3xy=1\)

m: \(M=\left(x-y\right)^3-x^2+2xy-y^2=\left(x-y\right)^3-\left(x-y\right)^2=\left(-5\right)^3-\left(-5\right)^2=-125-25=-150\)

n: \(N=2\left(x^3-y^3\right)-3\left(x+y\right)^2\)

\(=2\left\lbrack\left(x-y\right)^3+3xy\left(x-y\right)\right\rbrack-3\left\lbrack\left(x-y\right)^2+4xy\right\rbrack\)

\(=2\left(2^3+3xy\cdot2\right)-3\left\lbrack2^2+4xy\right\rbrack=16+12xy-12-12xy=4\)

TH
Thầy Hùng Olm
Manager VIP
20 tháng 5

Đây là các bài luyện tập CB. em gặp chưa hiểu biết cách làm xem lại lý thuyết mà chưa hiểu gửi 1-2 câu thầy cô và các bạn hỗ trợ sau đó tự làm tiếp để hiểu bài và học tốt.


Bài 1:

1: xx'⊥AD

yy'⊥AD

Do đó: xx'//yy'

2:

Cách 1:

xx'//yy'

=>\(\hat{C_1}=\hat{x^{\prime}BC}\) (hai góc so le trong)

=>\(\hat{C_1}=70^0\)

Cách 2:

ta có: \(\hat{x^{\prime}BC}+\hat{xBC}=180^0\) (hai góc kề bù)

=>\(\hat{xBC}=180^0-70^0=110^0\)

Ta có: xx'//yy'

=>\(\hat{xBC}+\hat{C_1}=180^0\) (hai góc trong cùng phía)

=>\(\hat{C_1}=180^0-110^0=70^0\)

Bài 2:

a: \(\hat{ABC}=\hat{n^{\prime}CB}\left(=80^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên mm'//nn'

b: Cách 1:

ta có: \(\hat{xAm}+\hat{mAD}=180^0\) (hai góc kề bù)

=>\(\hat{mAD}=180^0-70^0=110^0\)

Ta có: AB//CD
=>\(\hat{mAD}=\hat{D_1}\) (hai góc so le trong)

=>\(\hat{D_1}=110^0\)

Cách 2:

Ta có: \(\hat{xAm}=\hat{BAD}\) (hai góc đối đỉnh)

\(\hat{xAm}=70^0\)

nên \(\hat{BAD}=70^0\)

Ta có: AB//CD

=>\(\hat{BAD}+\hat{D_1}=180^0\) (hai góc trong cùng phía)

=>\(\hat{D_1}=180^0-70^0=110^0\)

Bài 2:

Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz

ta có: BD//Ax

=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)

=>\(\hat{ABD}=180^0-125^0=55^0\)

Ta có: BD//Cz

=>\(\hat{DBC}+\hat{BCz}=180^0\) (hai góc trong cùng phía)

=>\(\hat{DBC}=180^0-130^0=50^0\)

Ta có: tia BD nằm giữa hai tia BA và BC

=>\(\hat{ABC}=\hat{DBA}+\hat{DBC}\)

=>\(\hat{ABC}=55^0+50^0=105^0\)

Bài 3:

Ax//yy'

=>\(\hat{xAB}=\hat{yBA}\) (hai góc so le trong)

=>\(\hat{yBA}=50^0\)

Cz//yy'

=>\(\hat{yBC}=\hat{zCB}\) (hai góc so le trong)

=>\(\hat{yBC}=40^0\)

Ta có: tia By nằm giữa hai tia BA và BC

=>\(\hat{ABC}=\hat{yBA}+\hat{yBC}=40^0+50^0=90^0\)

Bài 4:

Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz

BD//Ax

=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)

=>\(\hat{ABD}=180^0-110^0=70^0\)

ta có; tia BD nằm giữa hai tia BA và BC

=>\(\hat{DBA}+\hat{DBC}=\hat{ABC}\)

=>\(\hat{DBC}=100^0-70^0=30^0\)

Ta có: \(\hat{DBC}=\hat{zCB}\left(=30^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên BD//Cz

Ta có: BD//Ax

BD//Cz

Do đó: Ax//Cz



a: a//b

=>\(\hat{A_1}=\hat{B_3}\) (hai góc so le trong)

\(\hat{A_1}=65^0\)

nên \(\hat{B_3}=65^0\)

b: Ta có: \(\hat{B}_3+\hat{B_2}=180^0\) (hai góc kề bù)

=>\(\hat{B_2}=180^0-65^0=115^0\)

11 tháng 8

Giải:

a; \(\hat{A_1}\) = \(65^0\) (gt)

\(\hat{A_1}\) = \(\hat{A_3}\) = 65\(^0\)(đối đỉnh)

\(\hat{A_3}\) = \(\hat{B_3}\) = \(65^0\) (slt)

b; \(\hat{B_2}\) + \(\hat{B_3}\) = 180\(^0\) (hai góc kề bù)

\(\hat{B_2}\) = 180\(^0\) - \(\hat{B_3}\)

\(\hat{B_2}\) = 180\(^0\) - 65\(^0\) = 115\(^0\)

Vậy a; \(\hat{B}_3\) = 65\(^0\)

b; \(\hat{B_2}\) = 115\(^0\)







Ta có: tia CD nằm giữa hai tia CF và CB

=>\(\hat{BCF}=\hat{BCD}+\hat{FCD}=20^0+50^0=70^0\)

Ta có: \(\hat{BCF}=\hat{ABC}\left(=70^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CF
Ta có: \(\hat{EDC}+\hat{DCF}=130^0+50^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên ED//CF

Ta có: AB//CF

ED//CF

Do đó: AB//DE

20 tháng 8

cảm ơn !

Bài 8:

Chu vi đáy là:

3,5+3,5+3+6=7+9=16(cm)

Diện tích xung quanh là: \(16\cdot11,5=184\left(\operatorname{cm}^2\right)\)

Bài 9:

Diện tích đáy là:

\(S=\frac12\cdot7\cdot24=12\cdot7=84\left(m^2\right)\)

Thể tích của khối bê tông là:

\(84\cdot22=1848\left(m^3\right)\)

Số tiền phải trả là:

\(1848\cdot2500000=4620000000\) (đồng)

19 tháng 8

Giải:

a; m ⊥ d; n ⊥ d

⇒ m//n (hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì song song với nhau)

b; Điểm B trên hình đâu em?



19 tháng 8

Giải:

a; \(\hat{x^{\prime}AB}\) = \(\hat{ABy}\) = 70\(^0\)(gt) (1)

\(\hat{x^{\prime}AB}\)\(\hat{ABy}\) (hai góc so le trong) (2)

Kết hợp (1) và (2) ta có:

\(xx^{\prime}\) // yy'

b; \(xx^{\prime}\) // yy' (cmt) (a)

mm' ⊥ \(x\)\(x^{\prime}\)(gt) (b)

Từ (a) và (b) ta có:

mm'⊥ yy' (tính chất từ vuông góc đến song song)

\(\hat{yDm^{\prime}}\) = 90\(^0\)




5 giờ trước (12:42)

Giúp mình câu d

3 giờ trước (15:33)

d: ĐKXĐ: x>=2

Ta có: \(\left(3\sqrt{x-2}+2\right)\left(\sqrt{x-1}+x\right)=0\)

\(3\sqrt{x-2}+2\ge2>0\forall x\) thỏa mãn ĐKXĐ
nên \(\sqrt{x-1}=x\)

=>\(\begin{cases}x-1=x^2\\ x\ge0\end{cases}\Rightarrow\begin{cases}x^2-x+1=0\\ x\ge2\end{cases}\)

=>\(\begin{cases}x^2-x+\frac14+\frac34=0\\ x\ge2\end{cases}\Rightarrow\begin{cases}\left(x-\frac12\right)^2+\frac34=0\left(vôlý\right)\\ x\ge2\end{cases}\)

=>x∈∅