K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED
=>DA=DE 

góc EDC+góc ADE=180 độ

góc ABC+góc ADE=180 độ

=>góc EDC=góc ABC

b: BA=BE

DA=DE

=>BD là trung trực của AE

=>BD vuông góc AE

24 tháng 10 2021

b) Xét tam giác ABF có:

BH là đường cao(AH⊥BH)

BH là phân giác( BC là phân giác \(\widehat{ABF}\))

=> Tam giác ABF cân tại B

=> AB=BF

Mà AB=CE(ΔMBA=ΔMCE)

=> CE=BF

c) Ta có: \(\widehat{ABC}=\widehat{BCE}\left(\Delta MBA=\Delta MCE\right)\)

Mà \(\widehat{ABC}=\widehat{KBC}\)(BC là phân giác \(\widehat{ABF}\))

\(\Rightarrow\widehat{BCE}=\widehat{KBC}\)

=> Tam giác KBC cân tại K

=> KM là đường trung tuyến cũng là đường phân giác \(\widehat{BKC}\left(1\right)\)

Ta có: KB=KC(KBC cân tại K), BF=CD(cmt)

=> KB-BF=KC-CE=> KF=KE

Xét tam giác BEK và tam giác CFK có:

KF=KE(cmt)

\(\widehat{K}\) chung

BK=KB(KBC cân tại K)

=> ΔBEK=ΔCFK(c.g.c)

=> \(\widehat{EBK}=\widehat{KCF}\)

Xét tam giác BFC và tam giác CEB có:

BC chung

\(\widehat{FBC}=\widehat{BCE}\)(cmt)

BF=CE(cmt)

=> ΔBFC=ΔCEB(c.g.c)

=> \(\widehat{BFC}=\widehat{BEC}\)

Xét tam giác BFI và tam giác CEI có:

\(\widehat{BFC}=\widehat{BEC}\left(cmt\right)\)

BF=CE(cmt)

\(\widehat{FBI}=\widehat{ECI}\left(cmt\right)\) 

=> ΔBFI=ΔCEI(g.c.g)

=> IF=IC

=> ΔIFK=ΔIEK(c.c.c)

=> KI là phân giác \(\widehat{BKC}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow M,I,K\) thẳng hàng

 

 

24 tháng 10 2021

cảm ơ cj :33

1: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y+4z}{2\cdot1-3\cdot6+4\cdot3}=\dfrac{24}{-4}=-6\)

Do đó: x=-6; y=-36; z=-18

2: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{1.1}=\dfrac{y}{1.3}=\dfrac{z}{1.4}=\dfrac{2x-y}{2\cdot1.1-1.3}=\dfrac{5.5}{0.9}=\dfrac{55}{9}\)

Do đó: x=121/18; y=143/18; z=77/9

3: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-5}=20\)

Do đó: x=400; y=300; z=180

4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{1}{6}}=\dfrac{y}{\dfrac{1}{10}}=\dfrac{z}{\dfrac{1}{15}}=\dfrac{x+y-z}{\dfrac{1}{6}+\dfrac{1}{10}-\dfrac{1}{15}}=\dfrac{90}{\dfrac{1}{5}}=450\)

Do đó: x=75; y=45; z=30

5 tháng 2 2022

câu 1 là 3x chứ có phải 3y đâu ạ (mình ghi lưu ý r ạ)

nếu là 3y thì giải thích được k ạ

31 tháng 5 2021

Bài 5:

f(x) có 1 nghiệm x - 2

=> f (2) = 0

\(\Rightarrow a.2^2-a.2+2=0\)

\(\Rightarrow4a-2a+2=0\)

=> 2a + 2 = 0

=> 2a = -2

=> a = -1

Vậy:....

P/s: Mỗi lần chỉ đc đăng 1 câu hỏi thôi! Bạn vui lòng đăng bài hình trên câu hỏi khác nhé!

31 tháng 5 2021

a)Ta có  △MIP cân tại M nên ˆMNI=ˆMPIMNI^=MPI^

Xét △MIN và △MIP có: 

ˆNMI=ˆPMINMI^=PMI^

MI : cạnh chung

ˆMNI=ˆMPIMNI^=MPI^

Nên △MIN = △MIP (c.g.c)

b)Gọi O là giao điểm của EF và MI

Vì △MNP là  tam giác cân và MI là đường phân giác của △MIP

Suy ra MI đồng thời là đường cao của △MNP

Nên ˆMOE=ˆMOF=90oMOE^=MOF^=90o

Xét △MOE vuông tại O và △MOF vuông tại O có:

OM : cạnh chung

ˆEMO=ˆFMOEMO^=FMO^(vì MI là đường phân giác của △MIP và O∈∈MI)

Suy ra △MOE = △MOF (cạnh góc vuông – góc nhọn kề)

Nên ME = MF

Vậy △MEF cân

tham khảo

Bài 2: 

a: Xét ΔBHA vuông tại H và ΔBHD vuông tại H có 

BH chung

HA=HD

Do đó: ΔBHA=ΔBHD

b: Ta có: ΔBHA=ΔBHD

nên \(\widehat{ABH}=\widehat{DBH}\)

hay BH là tia phân giác của góc ABD

30 tháng 12 2021

a: \(\widehat{A}=180^0-2\cdot70^0=40^0\)

Bài 2: Chọn C

Bài 4: 

a: \(\widehat{C}=180^0-80^0-50^0=50^0\)

Xét ΔABC có \(\widehat{A}=\widehat{C}< \widehat{B}\)

nên BC=AB<AC

b: Xét ΔABC có AB<BC<AC

nên \(\widehat{C}< \widehat{A}< \widehat{B}\)

11 tháng 12 2021

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

27 tháng 3 2022

tách re đc hơm, chỗ này nhìn mún lười

27 tháng 3 2022

giúp với ạ huhu

17 tháng 11 2021

bn ơi bài nào ghi rõ nha