Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=\(\left(3\sqrt{3}-3\sqrt{3}+2\sqrt{6}\right):3\sqrt{3}\)
\(=1-\dfrac{\sqrt{6}}{2}+\dfrac{2\sqrt{2}}{3}\)
=\(\dfrac{6}{6}-\dfrac{3\sqrt{6}}{6}+\dfrac{4\sqrt{2}}{6}\)
=\(\dfrac{6+\sqrt{6}}{6}\)
\(2,\\ a,ĐK:x\in R\\ PT\Leftrightarrow\sqrt{\left(3x+1\right)^2}=1-2x\\ \Leftrightarrow\left|3x+1\right|=1-2x\Leftrightarrow\left[{}\begin{matrix}3x+1=1-2x\left(x\ge-\dfrac{1}{3}\right)\\3x+1=2x-1\left(x< -\dfrac{1}{3}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-2\left(tm\right)\end{matrix}\right.\\ b,ĐK:x\ge4\\ PT\Leftrightarrow6\cdot\dfrac{1}{3}\sqrt{x-4}+\dfrac{2}{5}\cdot5\sqrt{x-4}=2\sqrt{x-4}+10\\ \Leftrightarrow2\sqrt{x-4}=10\Leftrightarrow\sqrt{x-4}=5\\ \Leftrightarrow x-4=25\Leftrightarrow x=29\left(tm\right)\)
\(\sqrt{x^2+6x+9}-1=2x\)
\(\sqrt{\left(x^2+2.x.3+3^2\right)}-1=2x\)
\(\sqrt{\left(x+3\right)^2}-1=2x\)
\(x+3-1=2x\)
\(x+2=2x\)
\(x=2\)
\(\Leftrightarrow\sqrt{x^2+6x+9}=2x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+1\ge0\\x^2+6x+9=\left(2x+1\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\x^2+6x+9=4x^2+4x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\3x^2-2x-8=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy \(x=2\)
Hình như cần sửa thành \(\ge\)mới đúng
\(2x^2+xy+2y^2=\frac{1}{2}\left(x+y\right)^2+\frac{3}{2}\left(x^2+y^2\right)\ge\frac{1}{2}\left(x+y\right)^2+\frac{3}{2}.\frac{1}{2}\left(x+y\right)^2=\frac{5}{4}\left(x+y\right)^2\)
\(\Rightarrow\sqrt{2x^2+xy+2y^2}\ge\frac{\sqrt{5}}{2}\left(x+y\right)\)
\(\Rightarrow\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
Vậy ta có đpcm.
Trước hết ta sẽ giải quyết phần \(\sqrt{5-2\sqrt{3-\sqrt{3}}}\)
ta có công thức rút gọn sau: \(S+_-2\sqrt{P}\Rightarrow x^2-Sx+P\Leftrightarrow x_1=a;x_2=b\Rightarrow S+2\sqrt{P}=\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\sqrt{5-2\sqrt{3-\sqrt{3}}}\Rightarrow x^2-5x+3\sqrt{3}=0\left(1\right)\)
\(\left(a=1;b=-5;c=3-\sqrt{3}\right)\)
\(\Delta=b^2-4ac=\left(-5\right)^2-4.1.\left(3-\sqrt{3}\right)=13+4\sqrt{3}>0\)
\(\sqrt{\Delta}=\sqrt{13+4\sqrt{3}}=\sqrt{\left(2\sqrt{3}+1\right)^2}=2\sqrt{3}+1\)
Phương trình (1) có 2 nghiệm phân biệt:
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\left(-5\right)+2\sqrt{3}+1}{2.1}=3+\sqrt{3}\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\left(-5\right)-\left(2\sqrt{3}-1\right)}{2.1}=2-\sqrt{3}\)
\(\Rightarrow\sqrt{5-2\sqrt{3-\sqrt{3}}}=\sqrt{\left(\sqrt{3+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)^2}=\sqrt{3+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)
\(F=\sqrt{3+\sqrt{3}}-\sqrt{2-\sqrt{3}}-\sqrt{3+\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
\(\Leftrightarrow F=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)
Nhân cả tử và mẫu của hai căn với căn 2
Từ đó ta sẽ được hằng đẳng thức ở tử và rút gọn mất căn:
\(\Leftrightarrow F=\frac{\sqrt{3}+1}{\sqrt{2}}-\frac{\sqrt{3}-1}{\sqrt{2}}=\sqrt{2}\)
Đề bài không chính xác, pt này không giải được
Pt hợp lý cần có dạng:
\(\dfrac{2x}{3x^2-5x+2}+\dfrac{13x}{3x^2+x+2}=...\)
Bình phương 2 vế là ra