
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có: \(\frac{\sqrt{x}+2}{x-1}-\frac{\sqrt{x}-2}{x-2\sqrt{x}+1}\)
\(=\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\)
\(=\frac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\)
Ta có: \(P=\left(\frac{\sqrt{x}+2}{x-1}-\frac{\sqrt{x}-2}{x-2\sqrt{x}+1}\right):\frac{4x}{\left(x-1\right)^2}\)
\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}\cdot\frac{\left(x-1\right)^2}{4x}\)
\(=\frac{1}{2\sqrt{x}}\cdot\left(\sqrt{x}-1\right)^2\cdot\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)

Bước 1: Viết lại phương trình cho rõ hơn
Ta có:
\(5 \times 2^{y} = 2^{x + 1} - 123\)
Chúng ta cần tìm các cặp số \(\left(\right. x , y \left.\right)\) thỏa mãn phương trình này.
Bước 2: Phân tích phương trình
- \(2^{x + 1}\) là một lũy thừa của 2.
- \(2^{y}\) cũng là một lũy thừa của 2.
Vì thế, ta có thể viết lại:
\(2^{x + 1} = 5 \times 2^{y} + 123\)
Bước 3: Khám phá các giá trị khả thi
- Để đảm bảo \(2^{x + 1}\) là một lũy thừa của 2, thì vế trái là một số mũ của 2.
- Vế phải là tổng của \(5 \times 2^{y}\) và 123, trong đó \(5 \times 2^{y}\) là một số chẵn, còn 123 là số lẻ.
Lưu ý:
- \(5 \times 2^{y}\) luôn là số chẵn (vì \(2^{y}\) là chẵn trừ khi \(y = 0\), khi \(2^{0} = 1\), thì \(5 \times 1 = 5\) là số lẻ).
- Vì vậy, ta cần xem xét khả năng \(y = 0\) để biết rõ hơn.
Bước 4: Thử các giá trị của \(y\)
Trường hợp 1: \(y = 0\)
\(5 \times 2^{0} = 5\)
Phương trình trở thành:
\(5 = 2^{x + 1} - 123\)
\(2^{x + 1} = 128\)
Vì \(128 = 2^{7}\):
\(x + 1 = 7 \Rightarrow x = 6\)
Vậy, cặp nghiệm là:
\(\boxed{\left(\right. x , y \left.\right) = \left(\right. 6 , 0 \left.\right)}\)
Trường hợp 2: \(y = 1\)
\(5 \times 2^{1} = 10\)
Phương trình:
\(10 = 2^{x + 1} - 123\)
\(2^{x + 1} = 133\)
Không phải là một lũy thừa của 2 (vì \(2^{7} = 128\) và \(2^{8} = 256\)), nên không có nghiệm.
Trường hợp 3: \(y = 2\)
\(5 \times 2^{2} = 20\)
\(20 = 2^{x + 1} - 123\)
\(2^{x + 1} = 143\)
Không phải là lũy thừa của 2.
Các giá trị của \(2^{y}\) tăng dần, và \(5 \times 2^{y}\) sẽ là các số chẵn, cộng 123 (số lẻ) sẽ luôn cho ra tổng là số lẻ.
Vì vậy, \(2^{x + 1}\) phải là số lẻ, nhưng lũy thừa của 2 là số chẵn (trừ \(2^{0} = 1\)), và chỉ có \(2^{0} = 1\) là số lẻ.
Bước 5: Kiểm tra \(y = 0\) — đã có nghiệm
Chúng ta đã thấy khi \(y = 0\), \(x = 6\).
Kết luận:
- Nghiệm duy nhất của phương trình là:
\(\boxed{\left(\right. x , y \left.\right) = \left(\right. 6 , 0 \left.\right)}\)

b) \(\sqrt{x^2}=\left|-8\right|\)
\(\Rightarrow\left|x\right|=8\)
\(\Rightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)
d) \(\sqrt{9x^2}=\left|-12\right|\)
\(\Rightarrow\sqrt{\left(3x\right)^2}=12\)
\(\Rightarrow\left|3x\right|=12\)
\(\Rightarrow\left[{}\begin{matrix}3x=12\\3x=-12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{12}{3}\\x=-\dfrac{12}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

ĐKXĐ: \(\left\{{}\begin{matrix}2x-3>=0\\x+1>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{3}{2}\\x>=-1\end{matrix}\right.\)
=>\(x>=\dfrac{3}{2}\)
\(\sqrt{2x-3}-\sqrt{x+1}=x-4\)
=>\(\dfrac{2x-3-x-1}{\sqrt{2x-3}+\sqrt{x+1}}-\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(\dfrac{1}{\sqrt{2x-3}+\sqrt{x+1}}-1\right)=0\)
=>x-4=0
=>x=4(nhận)


a) Do MN ⊥ OA tại H (gt)
⇒ H là trung điểm của MN
Tứ giác OMAN có:
H là trung điểm của OA (gt)
H là trung điểm của MN (cmt)
⇒ OMAN là hình thoi
⇒ OA là tia phân giác của ∠MON (1)
Do BM và BN là hai tiếp tuyến của (O) (gt)
⇒ OB là tia phân giác của ∠MON (2)
Từ (1) và (2) suy ra O, A, B thẳng hàng
b) Do OMAN là hình thoi (cmt)
⇒ AM = OA = OM = R
⇒ ∆OAM là tam giác đều
⇒ ∠MOA = 60⁰
⇒ ∠MOB = 60⁰
Do BM là tiếp tuyến của (O) (gt)
⇒ BM ⊥ OM
⇒ ∆OMB vuông tại M
⇒ ∠OBM + ∠MOB = 90⁰
⇒ ∠OBM = 90⁰ - ∠MOB = 90⁰ - 60⁰ = 30⁰
Do BM và BN là hai tiếp tuyến của (O) (gt)
⇒ BO là tia phân giác của ∠MBN
⇒ ∠MBN = 2.∠OBM = 2.30⁰ = 60⁰
Do BM và BN là hai tiếp tuyến của (O) (gt)
⇒ BM = BN
∆BMN có:
BM = BN (cmt)
⇒ ∆BMN cân tại B
Mà ∠MBN = 60⁰ (cmt)
⇒ ∆BMN là tam giác đều
c) ∆OMB vuông tại M (cmt)
Do MN ⊥ OA tại H (gt)
⇒ MH ⊥ OB
⇒ MH là đường cao của ∆OMB
⇒ OH.OB = OM²
Hay OH.OB = R²
d) ∆OMB vuông tại B (cmt)
⇒ BM = OM.tanMOB
= R.tan30⁰

a: Xét (O) có
BD,BA là các tiếp tuyến
Do đó: BD=BA
=>B nằm trên đường trung trực của AD(1)
Ta có: OD=OA
=>O nằm trên đường trung trực của AD(2)
Từ (1),(2) suy ra OB là đường trung trực của AD
=>OB⊥AD
Xét (O) có
CA,CE là các tiếp tuyến
Do đó: CA=CE
=>C nằm trên đường trung trực của AE(3)
Ta có: OA=OE
=>O nằm trên đường trung trực của AE(4)
Từ (3),(4) suy ra OC là đường trung trực của AE
=>OC⊥AE
b: BD+CE
=BA+AC
=BC


a: Xét tứ giác SAOB có \(\hat{SAO}+\hat{SBO}=90^0+90^0=180^0\)
nên SAOB là tứ giác nội tiếp đường tròn đường kính SO
b: ΔOMN cân tại O
mà OI là đường trung tuyến
nên OI⊥MN tại I
Ta có: \(\hat{OIS}=\hat{OAS}=\hat{OBS}=90^0\)
=>O,I,A,S,B cùng thuộc đường tròn đường kính OS
c: Xét (O) có
SA,SB là các tiếp tuyến
Do đó: SA=SB
=>S nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1),(2) suy ra SO là đường trung trực của AB
=>SO⊥AB tại H và H là trung điểm của AB
Xét ΔSAO vuông tại A có AH là đường cao
nên \(SH\cdot SO=SA^2\)
d: Xét (O) có
\(\hat{SAM}\) là góc tạo bởi tiếp tuyến AS và dây cung AM
\(\hat{ANM}\) là góc nội tiếp chắn cung AM
Do đó: \(\hat{SAM}=\hat{ANM}\)
Xét ΔSAM và ΔSNA có
\(\hat{SAM}=\hat{SNA}\)
góc ASM chung
Do đó: ΔSAM~ΔSNA
=>\(\frac{SA}{SM}=\frac{SN}{SA}\)
=>\(SA^2=SM\cdot SN\)

Mình không thấy câu nào cả thì giúp kiểu gì lỗi ảnh hay sao ý
1) \(\sqrt{-2x+3}\) có nghĩa khi:
\(-2x+3\ge0\)
\(\Leftrightarrow-2x\ge-3\)
\(\Leftrightarrow2x\le3\)
\(\Leftrightarrow x\le\dfrac{3}{2}\)
2) \(\sqrt{-5x}\) có nghĩa khi:
\(-5x\ge0\)
\(\Leftrightarrow x\le0\)
3) \(\sqrt{\dfrac{x}{3}}\) có nghĩa khi:
\(\dfrac{x}{3}\ge0\)
\(\Leftrightarrow x\ge\dfrac{0}{3}\)
\(\Leftrightarrow x\ge0\)
4) \(\sqrt{1+x^2}\)
Mà: \(x^2\ge0\Rightarrow1+x^2\ge1>0\)
\(\sqrt{1-x^2}\) được xác định \(\forall x\)
5) \(\sqrt{\dfrac{4}{x+3}}\) có nghĩa khi:
\(\dfrac{4}{x+3}\ge0\) và \(x+3\ne0\)
Mà: \(4>0\)
\(\Leftrightarrow x+3>0\)
\(\Leftrightarrow x>-3\)
6) \(\sqrt{\dfrac{-5}{x^2+6}}\)
Mà: \(-5< 0\)
\(x^2+6\ge6>0\forall x\)
\(\Rightarrow\dfrac{-5}{x^2+6}\le-\dfrac{5}{6}< 0\forall x\)
Biểu thức này không được xác định
7) \(\sqrt{\dfrac{1}{-1+x}}\) có nghĩa khi:
\(\dfrac{1}{x-1}\ge0;x-1\ne0\)
Mà: 1 > 0
\(\Leftrightarrow x-1>0\)
\(\Leftrightarrow x>1\)
8) \(\sqrt{\dfrac{2}{x^2}}\) có nghĩa khi:
\(\dfrac{2}{x^2}\ge0;x\ne0\)
\(\Leftrightarrow x\ne0\)
9) \(\sqrt{x^2-2x+1}\)
\(=\sqrt{\left(x-1\right)^2}\)
Mà: \(\left(x-1\right)^2\ge0\forall x\)
Biểu thức được xác định với mọi x
10) \(\sqrt{-x^2-2x-1}\)
\(=\sqrt{-\left(x^2+2x+1\right)}\)
\(=\sqrt{-\left(x+1\right)^2}\)
Mà: \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x+1\right)^2\le0\forall x\)
Nên biểu thức không được xác định
11) \(\dfrac{1}{\sqrt{4x^2-12x+9}}=\dfrac{1}{\sqrt{\left(2x-3\right)^2}}=\dfrac{1}{\left|2x-3\right|}\)
Có nghĩa khi:
\(2x-3\ne0\)
\(\Leftrightarrow2x\ne3\)
\(\Leftrightarrow x\ne\dfrac{3}{2}\)
12) \(\sqrt{x^2-8x+15}\)
\(=\sqrt{x^2-8x+16+1}\)
\(=\sqrt{\left(x-4\right)^2+1}\)
Mà: \(\left(x-4\right)^2+1\ge1>0\forall x\)
Biểu thức được xác định với mọi x
13) \(\sqrt{x-2}+\dfrac{1}{x-5}\) xác định khi:
\(\left\{{}\begin{matrix}x-2\ge0\\x-5\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne5\end{matrix}\right.\)
14) \(\sqrt{\dfrac{2+x}{5-x}}\) có nghĩa khi:
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2+x\ge0\\5-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}2+x\le0\\5-x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-2\\x< 5\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-2\\x>5\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow-2\le x< 5\)
15) \(\sqrt{\dfrac{x-1}{x+2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\ge0\\x+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\le0\\x+2< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge1\\x>-2\end{matrix}\right.\\\left\{{}\begin{matrix}x\le1\\x< -2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x>-2\end{matrix}\right.\)