K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2022

\(Tacó:\)

\(\left(2x-1\right)^2\ge0\forall x\)

⇒ \(B\le5\forall x\)

Max B=5 ⇔ \(x=\dfrac{1}{2}\)

\(B\le5\forall x\)

Dấu '=' xảy ra khi x=1/2

5 tháng 11 2023

Ta có:

\(\left(x-1\right)^2+\left(y+2\right)^2=0\)

Do: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)

Mặt khác: \(\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Thay vào B ta có:

\(B=2\cdot1^5-5\cdot\left(-2\right)^3+4=2\cdot1-5\cdot-8+4=2+40+4=46\)

16 tháng 12 2017

Ta có :

\(B=\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}\)

vì x2 \(\ge\)\(\Rightarrow\)x2 + 3 \(\ge\)

\(\Rightarrow\frac{12}{x^2+3}\le4\)

\(\Rightarrow B\le1+4=5\)

Vậy GTLN của B là 5 khi x2 + 3 = 3 hay x = 0

Ta có: \(B=1+\frac{12}{x^2+3}\)

\(x^2+3\ne0\in Z\)

\(\Rightarrow\)Ta có 2 trường hợp

+) x2+3 nguyên dương

 \(\Rightarrow\frac{12}{x^2+3}\le12\Rightarrow B\le13\)(1)

+) x2+3 nguyên âm

\(\Rightarrow\frac{12}{x^2+3}< 0\Rightarrow B< 0\)(2)

Từ (1)(2) \(\Rightarrow B\le13\)

\(A=2\left|x-5\right|-2015\ge-2015\)

\(Min_A=-2015\Leftrightarrow x=5\)

\(B=205-\left|3x-5\right|\le205\)

\(Max_B=205\Leftrightarrow x=\frac{5}{3}\)

30 tháng 7 2017

có cách làm củ thể hơn k bạn

1 tháng 1 2019

B = \(\dfrac{x^2+15}{x^2+3}\)

= \(\dfrac{x^2+3+12}{x^2+3}\)

= 1 + \(\dfrac{12}{x^2+3}\)

Để B đạt GTLN

=> x2 + 3 nhỏ nhất

Mà x2 nhỏ nhất bằng 0

=> x2 + 3 nhỏ nhất bằng 3

Vậy GTLN của B là 1 + \(\dfrac{12}{3}\)

= 1 + 4

= 5

27 tháng 8 2016

Ta có |2x - 1| >= 0

=> - |2x - 1| <= 0

=> 5 - |2x - 1| <= 5

Vậy GTLN của biểu thức là 5 khi x = 0,5

27 tháng 8 2016

Ta có:

|2x-1| luôn lớn hơn hoặc bằng 0.

Mà 5 trừ đi 1 số dương sẽ giảm giá trị.

Từ đó suy ra để A đạt giá trị lớn nhất thì |2x-1|=0.

=>2x-1=0

=>x=1/2.

Vậy giá trị lớn nhất của A là 5 khi x=1/2.

Chúc bạn học tốt^^