Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: OA=OB(gt)
nên \(\dfrac{OA}{OB}=1\)(1)
Ta có: AC=BD(gt)
nên \(\dfrac{AC}{BD}=1\)(2)
Từ (1) và (2) suy ra \(\dfrac{OA}{OB}=\dfrac{AC}{BD}\)
hay \(\dfrac{OA}{AC}=\dfrac{OB}{BD}\)
Xét ΔOCD có
A∈OC(gt)
B∈OD(gt)
\(\dfrac{OA}{AC}=\dfrac{OB}{BD}\)(cmt)
Do đó: AB//CD(Định lí Ta lét đảo)
Ta có: OB+BD=OD(B nằm giữa O và D)
OA+AC=OC(A nằm giữa O và C)
mà OB=OA(gt)
và AC=BD(gt)
nên OD=OC
Xét ΔODC có OD=OC(cmt)
nên ΔODC cân tại O(Định nghĩa tam giác cân)
⇒\(\widehat{ODC}=\widehat{OCD}\)(hai góc ở đáy)
hay \(\widehat{ACD}=\widehat{BDC}\)
Xét tứ giác ABDC có AB//DC(cmt)
nên ABDC là hình thang có hai đáy là AB và DC(Định nghĩa hình thang)
Hình thang ABDC(AB//DC) có \(\widehat{ACD}=\widehat{BDC}\)(cmt)
nên ABDC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
Bài 2:
Ta có: \(5x\left(x-1\right)=x-1\)
\(\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
a: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
\(M=\left(\dfrac{x+3}{x-3}-\dfrac{18}{\left(x-3\right)\left(x+3\right)}+\dfrac{x-3}{x+3}\right):\dfrac{x+3-x-1}{x+3}\)
\(=\dfrac{x^2+6x+9-18+x^2-6x+9}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{2}\)
\(=\dfrac{2x^2}{x-3}\cdot\dfrac{1}{2}=\dfrac{x^2}{x-3}\)
b: Để M nguyên thì \(x^2-9+9⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(x\in\left\{4;2;6;0;12;-6\right\}\)
a/
\(\Leftrightarrow3-x-2-\left(10x-15\right)=0\)
\(\Leftrightarrow3-x-2-10x+15=0\)
\(16-11x=0\)
\(\Leftrightarrow x=\dfrac{16}{11}\)
d: \(\Leftrightarrow2x^2-10x-x^2+6x-9-3x+5x-x^2=0\)
=>-2x-9=0
=>-2x=9
hay x=-9/2
c: \(\Leftrightarrow19-x^3+15x^2-75x+125=x\left(3-x^2-24x+144\right)\)
\(\Leftrightarrow-x^3+15x^2-75x+144-3x+x^3+24x^2-144x=0\)
\(\Leftrightarrow39x^2-222x+144=0\)
\(\Delta=\left(-222\right)^2-4\cdot39\cdot144=26820>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{222-6\sqrt{745}}{78}=\dfrac{37-\sqrt{745}}{13}\\x_2=\dfrac{37+\sqrt{145}}{13}\end{matrix}\right.\)
\(2,\\ a,=2x^2+4x-3x-6-2x^2-4x-2=-3x-8\\ b,=\left[x-2+2\left(x+1\right)\right]^2=\left(x-2+2x+2\right)^2=9x^2\)
\(1,=\left(x+2\right)^2\\ 2,=\left(4-x\right)^2\\ 3,=\left(x+3y\right)^2\\ 4,=\left(2x-1\right)^2\\ 5,=\left(3-y\right)^2\\ 6,=\left(1-y\right)^2\\ 7,=\left(3x+2y\right)^2\\ 8,=-\left(y-5\right)^2\\ 9,=x^2+98=???\)
1)
a) 4y2-4xy+x2= x2-4xy+4y2= (x-2y)2
b) 9x2-12xy+4y2= (3x)2-2.3x.2y+(2y)2= (3x-2y)2
c) 16x2-25=(4x)2-52= (4x-5)(4x+5)
d) 1-9y2= 12-(3y)2=(1-3y)(1+3y)
g) x3-27y3= (x-3y)(x2+3xy+9y2)
h) 64 + 8x3=(4+2x)(16+8x+4x2)
Bài 5:
e: \(=\dfrac{x-5+2x+10-2x-10}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}=\dfrac{1}{x+5}\)