K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2021

Kẻ \(BH\perp DC\) tại H

Dễ cm được \(ABHD\) là hình vuông(do ABHD là có ba góc vuông và hai cạnh kề bằng nhau)

\(\Rightarrow BH=HD=8\)m

Có \(tanC=\dfrac{BH}{HC}\Leftrightarrow tan45^0=\dfrac{8}{HC}\Leftrightarrow HC=8\left(m\right)\)

Có \(sinC=\dfrac{BH}{BC}\Leftrightarrow sin45^0=\dfrac{8}{BC}\Leftrightarrow BC=8\sqrt{2}\left(m\right)\)

Chu vi hình thang là:

\(C=AB+BC+CD+AD=8+8\sqrt{2}+CH+HD+AD=8+8\sqrt{2}+8+8+8=32+8\sqrt{2}\left(m\right)\)

Ý A

\(\text{Δ}=\left(-3\right)^2-4\cdot\left(2m+1\right)\)

=9-8m-4=-8m+5

Để phương trình có nghiệm kép thì -8m+5=0

hay m=5/8

Pt trở thành \(x^2-3x+\dfrac{9}{4}=0\)

hay x=3/2

Câu 16: A

Câu 14: C

Câu 12: A

a: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM⊥AB

11 tháng 11 2021

ĐKXĐ: \(\left\{{}\begin{matrix}-3x\ge0\\x^2-1\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le0\\x^2\ne1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le0\\x\ne\pm1\end{matrix}\right.\)

NV
6 tháng 3 2023

Ta có:

\(\dfrac{ab+bc+ca}{2\left(a^2+b^2+c^2\right)}+\dfrac{1}{6}\left(\dfrac{a^2+b^2+c^2}{abc}\right)\ge2\sqrt{\dfrac{1}{12}\left(\dfrac{ab+ca+ca}{abc}\right)}=\sqrt{3\left(\dfrac{ab+bc+ca}{abc}\right)}\)

Nên ta chỉ cần cm:

\(\sqrt{\dfrac{1}{3}\left(\dfrac{ab+bc+ca}{abc}\right)}\ge\dfrac{a+b+c}{3}\Leftrightarrow3\left(\dfrac{ab+bc+ca}{abc}\right)\ge\left(a+b+c\right)^2\)

Thật vậy, ta có:

\(\dfrac{3\left(ab+bc+ca\right)}{abc}=\dfrac{\left(a^2b+b^2c+c^2a\right)\left(ab+bc+ca\right)}{abc}\)

\(=\left(\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}\right)\left(ac+ab+bc\right)\ge\left(a+b+c\right)^2\) (Bunhiacopxki)

Dấu "=" xảy ra khi \(a=b=c=1\)

3: Ta có: ΔABC vuông tại A 

nên \(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{B}=60^0\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}\)

\(\Leftrightarrow AB=12.5\left(cm\right)\)

\(\Leftrightarrow AC=12.5\sqrt{3}\left(cm\right)\)