Kỳ thi tuyển sinh vào lớp 10

Đề thi môn: Toán

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Kỳ thi tuyển sinh vào lớp 10

Đề thi môn: Toán

Năm học 2021 - 2022

Thời gian: 120 phút

 

Phần II. Tự luận

Bài 1: (2 điểm)

1) Thu gọn biểu thức

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

2) giải phương trình và hệ phương trình sau:

a) 3x2 + 5x - 8 = 0

b) (x2 + 5)2 = 3(x2 + 5) + 4

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Bài 2: (1,5 điểm) Trong mặt phẳng tọa độ Oxy cho Parabol (P) : y = x2 và đường thẳng (d) :

y = 2mx – 2m + 1

a) Với m = -1 , hãy vẽ 2 đồ thị hàm số trên cùng một hệ trục tọa độ

b) Tìm m để (d) và (P) cắt nhau tại 2 điểm phân biệt : A (x1; y1 );B(x2; y2) sao cho tổng các tung độ của hai giao điểm bằng 2 .

Bài 3: (1 điểm) Rút gọn biểu thức sau:

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

Tìm x để A < 0

Bài 4: (3,5 điểm) Cho đường tròn (O) có dây cung CD cố định. Gọi M là điểm nằm chính giữa cung nhỏ CD. Đường kính MN của đường tròn (O) cắt dây CD tại I. Lấy điểm E bất kỳ trên cung lớn CD, (E khác C,D,N); ME cắt CD tại K. Các đường thẳng NE và CD cắt nhau tại P.

a) Chứng minh rằng :Tứ giác IKEN nội tiếp

b) Chứng minh: EI.MN = NK.ME

c) NK cắt MP tại Q. Chứng minh: IK là phân giác của góc EIQ

d) Từ C vẽ đường thẳng vuông góc với EN cắt đường thẳng DE tại H. Chứng minh khi E di động trên cung lớn CD (E khác C, D, N) thì H luôn chạy trên một đường cố định.

Giúp mk với thề mk sẽ k đầy đủ

6
6 tháng 11 2021

mình mới lớp 6 nên kc bt xin lỗi à

6 tháng 11 2021

Bài 2:

a) Với m ≠ 0, phương trình trên là phương trình bậc hai ẩn x

Δ' = (m + 1)2 - m(m - 4) = m2 + 2m + 1 - m2 + 4m = 6m + 1

Phương trình có 2 nghiệm x1; x2 khi và chỉ khi Δ' = 6m + 1 ≥ 0

Khi đó, theo định lí Vi-et ta có:

Theo bài ra:

x1 + 4x2 = 3

<=> (x1 + x2 ) + 3x2 = 3

 + 3x2 = 3

=> 5m2 - 2m - 16 = 9m2 - 36m

<=> 4m2 - 34m + 16 = 0

undefined

Đối chiếu với điều kiện thỏa mãn

Vậy m = 8, m =  thì x1 + 4x2 = 3

b) Ta có:

2(x1 + x2 ) + x1x2 =  = 5

Vậy hệ thức liên hệ giữa x1 và x2 không phụ thuộc vào m là 2(x1 + x2 ) + x1x2 = 5

Bài 3:

Gọi số học sinh lớp 9A là x ( học sinh) (x > 8, x ∈ N)

Khi đó, số cây mỗi học sinh phải trồng là:

 (cây học sinh )

Do có 8 bạn học sinh vắng mặt nên số cây mỗi bạn phải trồng là

 (cây học sinh )

Theo bài ra, mỗi bạn phải trồng thêm 3 cây nên ta có phương trình

=> 480(x - 8) + 3x(x - 8) = 480x

<=> 3x2 - 24x - 3840 = 0

Vậy số học sinh lớp 9A là 40 học sinh

Bài 4:

a) Xét tứ giác AMHN có:

∠AMH = 90o (MH ⊥ AB)

∠ANH = 90o (NH ⊥ AC)

=> ∠AMH + ∠ANH = 180o

=> Tứ giác AMHN là tứ giác nội tiếp

b) Ta có:

ΔAMH vuông tại M: ∠AHM + ∠MAH = 90o

ΔABH vuông tại H: ∠ABC + ∠MAH = 90o

=> ∠AHM = ∠ABC

Do tứ giác AMHN là tứ giác nội tiếp nên ∠AHM = ∠ANM (2 góc nội tiếp cùng chắn cung AM)

=> ∠ABC = ∠ANM

c) Kẻ đường kính AD của (O), Gọi I là giao điểm của AD và MN

ΔANH vuông tại N: ∠AHN + ∠NAH = 90o

ΔACH vuông tại H: ∠AHN + ∠ACB = 90o

=> ∠NAH = ∠ACB

Ta lại có: ∠ACB = ∠ADB (2 góc nội tiếp cùng chắn cung AB)

=> ∠NAH = ∠ADB

Mặt khác: tứ giác AMHN là tứ giác nội tiếp nên ∠AMN = ∠AHN (2 góc nội tiếp cùng chắn cung AN)

=> ∠AMN = ∠ADB

Xét ΔAMI và ΔABD có:

∠BAD là góc chung

∠AMN = ∠ADB

=> ΔAMI ∼ ΔADB

=> ∠ AIM = ∠ABD

Mà ∠ABD = 90o (góc nội tiếp chắn nửa đường tròn)

=> ∠AIM = 90o

Hay OA ⊥ MN

d) Xét tam giác AIN và tam giác ACD có:

∠DAC là góc chung

∠AIN = ∠ACD = 90o

=> ΔAIN ∼ ΔACD

=><=> AI.AD = AC.AN (1)

Xét ΔAHC vuông tại H có HN là đường cao

=> AC. AN = AH2 (2)

Từ (1) và (2) => AI.AD = AH2 <=> AI.AD = 2R2

<=> AI.2R = 2R2 <=> AI = R <=> I ≡ O

Vậy M, N, O thẳng hàng.

Bài 5:

Do a, b > 0 nên ta có:

Dấu bằng xảy ra khi:

undefined

Vậy GTLN của P là 2√2, đạt được khi a = b = 1.

10 tháng 9 2021

a)\(\sqrt{81}-\sqrt{80}\)\(.\sqrt{0,2}\)\(=\sqrt{9^2}-\sqrt{80.0,2}\)\(=9-\sqrt{16}\)\(=9-4=5\)

    \(\sqrt{\left(2-\sqrt{5}\right)^2}\)\(-\frac{1}{2}.\sqrt{20}\)\(=|2-\sqrt{5}|-\frac{1}{2}.\sqrt{4.5}\)\(=2-\sqrt{5}-\frac{1}{2}.2\sqrt{5}\)

   \(=2-\sqrt{5}-\sqrt{5}=2\)

Tôi lm đc đến đây thôi(@_@)

   \(\)

10 tháng 9 2021

ko biết

30 tháng 9 2020

:v Làm bài 31 thôi nhá , còn lại all tự làm -..-

Gọi x (cm) , y (cm) là độ dài hai cạnh góc vuông của tam giác vuông (x > 2, y > 4).

Diện tích tam giác ban đầu là \(\frac{1}{2}xy\left(cm^2\right)\)

+ Tăng mỗi cạnh lên 3cm thì tam giác vuông mới có độ dài 2 cạnh là x + 3(cm) và y + 3 (cm)

Diện tích tam giác mới là : \(\frac{1}{2}\left(x+3\right)\left(y+3\right)\left(cm^2\right)\)

Diện tích tăng thêm 36 cm2 nên ta có p/trình :

\(\frac{1}{2}\left(x+3\right)\left(y+3\right)=\frac{1}{2}xy+36\)

\(\Leftrightarrow\left(x+3\right)\left(y+3\right)=xy+72\)

\(\Leftrightarrow xy+3x+3y+9=xy+72\)

\(\Leftrightarrow3x+3y=63\)

\(\Leftrightarrow x+y=21\)

+ Giảm một cạnh 2cm và giảm cạnh kia 4cm thì tam giác vuông mới có 2 cạnh là : x – 2 (cm) và y – 4 (cm).

Diện tích tam giác mới là : \(\frac{1}{2}\left(x-2\right)\left(y-4\right)\left(cm^2\right)\)

Diện tích giảm đi 26cm2 nên ta có phương trình :

\(\frac{1}{2}\left(x-2\right)\left(y-4\right)=\frac{1}{2}xy-26\)

\(\Leftrightarrow\left(x-2\right)\left(y-4\right)=xy-52\)

\(\Leftrightarrow xy-4x-2y+8=xy-52\)

\(\Leftrightarrow4x+2y=60\)

\(\Leftrightarrow2x+y=30\)

Ta có hệ phương trình : \(\hept{\begin{cases}x+y=21\\2x+y=30\end{cases}}\)

Lấy phương trình thứ hai trừ phương trình thứ nhất ta được :

\(\hept{\begin{cases}\left(2x+y\right)-\left(x+y\right)=30-21\\x+y=21\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+y-\left(x+y\right)=9\\x+y=21\end{cases}\Leftrightarrow\hept{\begin{cases}x=9\\y=12\end{cases}}}\)

Vậy tam giác có hai cạnh lần lượt là 9cm và 12cm

25 tháng 2 2018

nhiều bài thế hả trời

11 tháng 9 2021

Bài 4 : 

a, Xét tam giác ABC vuông tại A, đường cao AH 

* Áp dụng hệ thức : \(AB^2=BH.BC=16\Rightarrow AB=4\)cm 

Theo định lí Ptago : \(AC=\sqrt{BC^2-AB^2}=\sqrt{64-16}=4\sqrt{3}\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{16\sqrt{3}}{8}=2\sqrt{3}\)cm 

b, Xét tam giác ABK vuông tại A, đường cao AD 

\(AB^2=BD.BK\)( hệ thức lượng ) (1) 

Xét tam giác ABC vuông tại A, đường cao AH

\(AB^2=BH.BC\)( hệ thức lượng ) (2) 

Từ (1) ; (2) => \(BD.BK=BH.BC\)(3) 

c, Xét tam giác BHD và tam giác BKC 

^B _ chung 

(3) => \(BD.BK=BH.BC\Rightarrow\frac{BD}{BC}=\frac{BH}{BK}\)

Vậy tam giác BHD ~ tam giác BKC ( c.g.c )

=> \(\frac{S_{BHD}}{S_{BKC}}=\left(\frac{BD}{BC}\right)^2\)(4) 

Ta có : cosABD = \(\frac{DB}{AB}\)

=> cos2ABD = \(\left(\frac{DB}{AB}\right)^2\)=> cos2ABD = \(\frac{DB^2}{AB^2}=\frac{DB^2}{16}\)

=> \(\frac{1}{4}cos^2\widehat{ABD}=\frac{DB^2}{64}=\frac{DB^2}{8^2}=\frac{DB^2}{BC^2}=\left(\frac{DB}{BC}\right)^2\)

\(\Rightarrow\frac{1}{4}cos^2\widehat{ABD}=\frac{S_{BHD}}{S_{BKC}}\)theo (4) 

=> \(S_{BHD}=S_{BKC}.\frac{1}{4}cos^2\widehat{ABD}\)

11 tháng 9 2021

Bài 3 : 

a, Với \(x>0;x\ne1\)

\(A=\left(\frac{1}{x+2\sqrt{x}}-\frac{1}{\sqrt{x}+2}\right):\frac{1-\sqrt{x}}{x+4\sqrt{x}+4}\)

\(=\left(\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right):\frac{1-\sqrt{x}}{\left(\sqrt{x}+2\right)^2}=\frac{\sqrt{x}+2}{\sqrt{x}}\)

b, Ta có : \(A=\frac{5}{3}\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{5}{3}\Rightarrow3\sqrt{x}+6=5\sqrt{x}\Leftrightarrow6=2\sqrt{x}\Leftrightarrow x=9\)

15 tháng 9 2021

\(a,\sqrt{x-2}\)có nghĩa khi\(\sqrt{x-2}\ge0\)

 \(\Rightarrow x\ge2\)

\(b,\frac{1}{\sqrt{2x-1}}\)có nghĩa khi  \(\sqrt{2x-1}>0\)

                                               \(\Rightarrow2x>1\)

                                                  \(\Rightarrow x>\frac{1}{2}\)

25 tháng 4 2017

Bằng 59

25 tháng 4 2017

Nhân đôi và trừ đi1

12 tháng 9 2018

\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)

a)thay \(x=2\sqrt{2}\)vào a ra có

\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)

\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)

Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)

7 tháng 2 2018

0 bt l m à

10 tháng 6 2021

a, Với a > 0 ; \(a\ne1\)

\(P=\left(\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{2}{a-1}\right)\)

\(=\left(\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(=\left(\frac{a\left(\sqrt{a}-1\right)-\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right):\left(\sqrt{a}-1\right)\)

\(=\left(\frac{a\sqrt{a}-a-\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right).\frac{1}{\sqrt{a}-1}\)

\(=\left(\frac{a\sqrt{a}-a-\sqrt{a}-1}{a\sqrt{a}-\sqrt{a}}\right).\frac{1}{\sqrt{a}-1}\)bạn kiểm tra đề lại nhé

gợi ý b ; c thì rút gọn xong mới làm đc

b, \(a=3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\)

rồi thay vào biểu thức đã rút gọn nhé