\(\sqrt{5}\)Và \(2\sqrt...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

a) Ta thấy:
\(\left(3+\sqrt{5}\right)^2=\left(\sqrt{9}+\sqrt{5}\right)^2=9+5+2\sqrt{45}=14+2\sqrt{45}\)
\(\left(2\sqrt{2}+\sqrt{6}\right)^2=\left(\sqrt{8}+\sqrt{6}\right)^2=8+6+2\sqrt{48}=14+2\sqrt{48}\)
Vì \(45< 48\)
\(\Rightarrow\sqrt{45}< \sqrt{48}\)
\(\Rightarrow2\sqrt{45}< 2\sqrt{48}\)
\(\Rightarrow14+2\sqrt{45}< 14+2\sqrt{48}\)
\(\Rightarrow\left(3+\sqrt{5}\right)^2< \left(2\sqrt{2}+\sqrt{6}\right)^2\)
Do \(3+\sqrt{5}>0;2\sqrt{2}+\sqrt{6}>0\)
\(\Rightarrow3+\sqrt{5}< 2\sqrt{2}+6\)

3 tháng 7 2017

b) Ta thấy:
Vì \(26>3\)
\(\Rightarrow\sqrt{26}>\sqrt{3}\)
\(\Rightarrow\sqrt{26}+1>\sqrt{3}\)
\(\Rightarrow\sqrt{27}+\sqrt{26}+1>\sqrt{27}+\sqrt{3}\)
Mà \(\sqrt{27}+\sqrt{3}=3\sqrt{3}+\sqrt{3}=4\sqrt{3}=\sqrt{48}\)
\(\Rightarrow\sqrt{27}+\sqrt{26}+1>\sqrt{48}\)

13 tháng 8 2018

Cho mình KQ xấp xỉ ở các ý

1 tháng 4 2020

a) \(\sqrt{17}-4\) b) \(\sqrt{3}\) c) \(\frac{\sqrt{2}}{2}\) d)\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) e) \(x-\sqrt{5}\)

f) \(4+2\sqrt{3}\) g) \(3+2\sqrt{2}\) h) \(x+\sqrt{x}+1\) i) \(\frac{3\sqrt{5}-\sqrt{15}}{10}\)

k) \(\sqrt{5}+\sqrt{6}\) i) 5 h) 0 l) \(\sqrt{5}+\sqrt{3}\) m) \(\frac{20\sqrt{3}}{3}\) d) 0

1 tháng 4 2020

ban ơi ccachs làm

24 tháng 6 2018

a) Ta có:

\(6\sqrt{5}=\sqrt{5\cdot36}=\sqrt{180}\)

\(5\sqrt{6}=\sqrt{6\cdot25}=\sqrt{200}\)

Mà \(\sqrt{180}< \sqrt{200}\)

Vậy: \(6\sqrt{5}< 5\sqrt{6}\)

x) Ta có: \(\sqrt{8}< \sqrt{9}\Rightarrow\sqrt{8}< 3\)

Công hai vế của BĐT cho 3: 

Suy ra: \(\sqrt{8}+3< 3+3=6\)

Vậy: \(\sqrt{8}+3< 6\)

b) Ta có:

\(\sqrt{2\sqrt{3}}=\sqrt[4]{12}\)

Tương tự: \(\sqrt{3\sqrt{2}}=\sqrt[4]{18}\)

Mà \(\sqrt[4]{18}>\sqrt[4]{12}\)

Vậy.....

d) Ta có: 

\(2\sqrt{5}-5=\sqrt{5}+\sqrt{5}-5=\left(\sqrt{5}-2\right)+\left(\sqrt{5}-3\right)>\sqrt{5}-3\)

Vậy ......

e) Ta có: 

\(\sqrt{2}-2=\frac{3\sqrt{2}-6}{3}\)

\(\sqrt{3}-3=\frac{2\sqrt{3}-6}{2}\)

Mà \(3\sqrt{2}>2\sqrt{3}\)

Vậy .....

f) ........... Đang thinking

24 tháng 10 2019

đang dùng máy tínhmaf

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

a)

\((\sqrt{3}-2\sqrt{12}+2\sqrt{4})(\sqrt{27}+\sqrt{144}-2\sqrt{16})\)

\(=(\sqrt{3}-4\sqrt{3}+4)(3\sqrt{3}+12-8)\)

\(=(-3\sqrt{3}+4)(3\sqrt{3}+4)=4^2-(3\sqrt{3})^2=16-27=-11\)

b)

\((2\sqrt{5}+2\sqrt{3})^2-4\sqrt{60}\)

\(=(2\sqrt{5})^2+2.2\sqrt{5}.2\sqrt{3}+(2\sqrt{3})^2-8\sqrt{15}\)

\(=32+8\sqrt{15}-8\sqrt{15}=32\)

c)

\(\sqrt{6}(3\sqrt{12}-4\sqrt{3}+\sqrt{48}-5\sqrt{6})\)

\(=3\sqrt{72}-4\sqrt{18}+\sqrt{6.48}-5.\sqrt{36}\)

\(=18\sqrt{2}-12\sqrt{2}+12\sqrt{2}-30=18\sqrt{2}-30\)

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

d)

\((\sqrt{2}-\sqrt{3})(\sqrt{6}+\sqrt{2})(\sqrt{2}+\sqrt{3})\)

\(=(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})(\sqrt{6}+\sqrt{2})\)

\(=(2-3)(\sqrt{6}+\sqrt{2})=-(\sqrt{6}+\sqrt{2})\)

e) Biểu thức bên trong căn lớn âm nên biểu căn bậc 2 không có nghĩa

f)

\((\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}).\frac{1}{\sqrt{3}+5}\)

\(=(\frac{2\sqrt{3}+15}{3-\sqrt{3}}+\frac{3}{\sqrt{3}-2}).\frac{1}{\sqrt{3}+5}\)

\(=\frac{2\sqrt{3}+15)(\sqrt{3}-2)+3(3-\sqrt{3})}{(3-\sqrt{3})(\sqrt{3}-2)}.\frac{1}{\sqrt{3}+5}\)

\(=\frac{-15+8\sqrt{3}}{(-9+5\sqrt{3})(\sqrt{3}+5)}=\frac{-15+8\sqrt{3}}{-30+16\sqrt{3}}=\frac{-15+8\sqrt{3}}{2(-15+8\sqrt{3})}=\frac{1}{2}\)

22 tháng 7 2017

a, \(\frac{1}{\left(\sqrt{3}+\sqrt{2}\right)^2}\) +\(\frac{1}{\left(\sqrt{3}-\sqrt{2}\right)^2}\) =\(\frac{\left(\sqrt{3}+\sqrt{2}\right)^2+\left(\sqrt{3}-\sqrt{2}\right)^2}{\left(\sqrt{3}+\sqrt{2}\right)^2\left(\sqrt{3}-\sqrt{2}\right)^2}\) 

                                                                         \(=\frac{10}{1}=10\)

mấy câu còn lại bạn tự làm nốt nhé mk ban rồi 

22 tháng 7 2017

Câu bạn trả lời ở đâu v 

a) 7 và \(\sqrt{37}+1\)

=7 và 7,08

=>......

b) \(\sqrt{17}-\sqrt{50}-1\)và \(\sqrt{99}\)

=-3,95 và 9,95

=>.....

2 tháng 6 2017

Võ Đông Anh Tuấn

Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)

a)

\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)

Vậy \(7>3\sqrt{5}\)

b)

\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)

Vậy \(8< 2\sqrt{7}+3\)

c)

\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)

Vậy \(3\sqrt{6}< 2\sqrt{15}\)

5 tháng 9 2020

a) Ta có: \(\frac{1}{5}\sqrt{150}=\frac{1}{5}\cdot5\sqrt{6}=\sqrt{6}=\frac{1}{3}\cdot\sqrt{6\cdot9}=\frac{1}{3}\sqrt{54}>\frac{1}{3}\sqrt{51}\)

b) Ta có: \(\frac{1}{2}\sqrt{6}=\sqrt{\frac{6}{4}}< \sqrt{\frac{36}{2}}=6\sqrt{\frac{1}{2}}\)

5 tháng 9 2020

a) Vì  \(5,\left(6\right)< 6\)\(\Rightarrow\)\(\frac{51}{9}< \frac{150}{25}\)

                                    \(\Rightarrow\)\(\sqrt{\frac{51}{9}}< \sqrt{\frac{150}{25}}\)

                                    \(\Rightarrow\)\(\frac{1}{3}\sqrt{51}< \frac{1}{5}\sqrt{150}\)

b) Vì  \(1,5< 18\)\(\Rightarrow\)\(\frac{6}{4}< \frac{36}{2}\)

                                 \(\Rightarrow\)\(\sqrt{\frac{6}{4}}< \sqrt{\frac{36}{2}}\)

                                 \(\Rightarrow\)\(\frac{1}{2}\sqrt{6}< 6\sqrt{\frac{1}{2}}\)