Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Điều kiện xác định : \(x\ne\pm1\)
\(K=\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{x^2-1}{x^2}\)
\(K=\frac{2}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{x^2}=\frac{2}{x^2}\)
Nhận thấy giá trị của x càng tăng thì giá trị của M càng giảm
mặt khác , giá trị của x lại không giảm quá 0 nên ta không thể nào xác định được giá trị lớn nhất của K
\(1,\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\in Z\Rightarrow\frac{4}{\sqrt{x}-3}\in Z\)
\(\Rightarrow\sqrt{x}-3\in\left(1;4;-1;-4\right)\)
\(\Rightarrow\sqrt{x}\in\left(4;7;2;-1\right)\)
\(\Rightarrow\sqrt{x}=4\Leftrightarrow x=2\)
\(4,A=x+\sqrt{x}+1\)
\(A=\left(\sqrt{x}\right)^2+2.\frac{1}{2}.\sqrt{x}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(A=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\Rightarrow A\ge\frac{3}{4}.\left(\sqrt{x}+\frac{1}{2}\right)^2\ge0\)
Dấu "=" xảy ra khi :
\(\sqrt{x}+\frac{1}{2}=0\Leftrightarrow\sqrt{x}=-\frac{1}{2}\)
Vậy Min A = 3/4 khi căn x = -1/2
e lớp 7 nên sai thì thôi ạ
\(P=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right).\frac{x+2007}{x}\left(ĐK:x\ne\pm1;0\right)\)
\(=\left(\frac{\left(x+1\right)^2-\left(x-1\right)^2}{x^2-1}+\frac{x^2-4x-1}{x^2-1}\right).\frac{x+2007}{x}\)
\(=\left[\frac{\left(x+1+x-1\right)\left(x+1-x-1\right)}{x^2-1}+\frac{x^2-4x-1}{x^2-1}\right].\frac{x+2007}{x}\)
\(=\left(\frac{2x.0}{x^2-1}+\frac{x^2-4x-1}{x^2-1}\right).\frac{2007}{x}+\frac{x^2-4x-1}{x^2-1}\)
\(=\frac{2007\left(x^2-4x-1\right)}{x^3-x}+\frac{x^2-4x-1}{x^2-1}\)
\(=\frac{2007x^2-8028x-2007}{x^3-x}+\frac{x^3-4x^2-x}{x^3-x}\)
\(=\frac{x^3+2003x^2-8029x-2007}{x^3-x}\)( số to vch )
1) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
\(P=\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\)
\(\Leftrightarrow P=\frac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
\(\Leftrightarrow P=\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
\(\Leftrightarrow P=\frac{4x+8\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)
\(\Leftrightarrow P=\frac{4\sqrt{x}}{2-\sqrt{x}}\)
2) Để \(P=2\)
\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}=2\)
\(\Leftrightarrow4\sqrt{x}=4-2\sqrt{x}\)
\(\Leftrightarrow6\sqrt{x}=4\)
\(\Leftrightarrow\sqrt{x}=\frac{2}{3}\)
\(\Leftrightarrow x=\frac{4}{9}\)
Vậy để \(P=2\Leftrightarrow x=\frac{4}{9}\)
3) Khi \(\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\2\sqrt{x}-1==0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\left(ktm\right)\\x=\frac{1}{4}\left(tm\right)\end{cases}}\)
Thay \(x=\frac{1}{4}\)vào P, ta được :
\(\Leftrightarrow P=\frac{4\sqrt{\frac{1}{4}}}{2-\sqrt{\frac{1}{4}}}=\frac{4\cdot\frac{1}{2}}{2-\frac{1}{2}}=\frac{2}{\frac{3}{2}}=\frac{4}{3}\)
4) Để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)
\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\)
\(\Leftrightarrow8x-4\sqrt{x}=-x-\sqrt{x}+6\)
\(\Leftrightarrow9x-3\sqrt{x}-6=0\)
\(\Leftrightarrow3x-\sqrt{x}-2=0\)
\(\Leftrightarrow\sqrt{x}=3x-2\)
\(\Leftrightarrow x=9x^2-12x+4\)
\(\Leftrightarrow9x^2-13x+4=0\)
\(\Leftrightarrow\left(9x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}9x-4=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{9}\\x=1\end{cases}}\)
Thử lại ta được kết quá : \(x=\frac{4}{9}\left(ktm\right)\); \(x=1\left(tm\right)\)
Vậy để \(P=\frac{\sqrt{x}+3}{2\sqrt{x}-1}\Leftrightarrow x=1\)
5) Để biểu thức nhận giá trị nguyên
\(\Leftrightarrow\frac{4\sqrt{x}}{2-\sqrt{x}}\inℤ\)
\(\Leftrightarrow4\sqrt{x}⋮2-\sqrt{x}\)
\(\Leftrightarrow-4\left(2-\sqrt{x}\right)+8⋮2-\sqrt{x}\)
\(\Leftrightarrow8⋮2-\sqrt{x}\)
\(\Leftrightarrow2-\sqrt{x}\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{1;3;0;4;-2;6;-6;10\right\}\)
Ta loại các giá trị < 0
\(\Leftrightarrow\sqrt{x}\in\left\{1;3;0;4;6;10\right\}\)
\(\Leftrightarrow x\in\left\{1;9;0;16;36;100\right\}\)
Vậy để \(P\inℤ\Leftrightarrow x\in\left\{1;9;0;16;36;100\right\}\)
\(\)
a)ĐKXĐ:
\(x-1\ne0;x+1\ne0;x\ne0\)
\(\Leftrightarrow x\ne1;x\ne-1;x\ne0\)
b)\(K=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right).\frac{x+2003}{x}\)
\(=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{x+2003}{x}\)
\(=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{x+2003}{x}\)
\(=\frac{x^2+2x+1+x^2-2x+1+x^2-4x-1}{\left(x-1\right)\left(x+1\right)}.\frac{x+2003}{x}\)
\(=\frac{3x^2-4x+1}{\left(x-1\right)\left(x+1\right)}.\frac{x+2003}{x}\)
\(=\frac{3x^2-3x-x+1}{\left(x-1\right)\left(x+1\right)}.\frac{x+2003}{x}\)
\(=\frac{3x.\left(x-1\right)-\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}.\frac{x+2003}{x}\)
\(=\frac{\left(x-1\right)\left(3x-1\right)}{\left(x-1\right)\left(x+1\right)}.\frac{x+2003}{x}\)
\(=\frac{\left(3x-1\right)\left(x+2003\right)}{\left(x+1\right).x}\)
\(=\frac{3x^2+6008x-2003}{x^2+x}\)
câu c bí