\(3.\sin3x-4.\cos3x=5\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

\(3.sin3x-4.cos3x=5\)

Ta có: 32 + (-4)2 = 52 . Chia pt cho \(\sqrt{3^2+\left(-4\right)^2}=5\) ta được:

\(\frac{3}{5}.sin3x-\frac{4}{5}.cos3x=1\) (1)

Đặt \(cos\alpha=\frac{3}{5},sin\alpha=\frac{4}{5}\) (1) trở thành:

\(sin\left(3x-\alpha\right)=sin\pi\)

\(\Rightarrow\orbr{\begin{cases}3x-\alpha=\pi+k2\pi\Rightarrow x=\frac{\pi+\alpha}{3}+\frac{k2\pi}{3}\\3x-\alpha=\pi-\pi+k2\pi\Rightarrow x=\frac{\alpha}{3}+\frac{k2\pi}{3}\end{cases}}\)

                 Vậy \(x=\left\{\frac{\pi+\alpha}{3}+\frac{k2\pi}{3};\frac{\alpha}{3}+\frac{k2\pi}{3}\right\}\)

20 tháng 5 2017

tui học rùi...

24 tháng 8 2017

Dùng tính đơn điệu của hàm số giải thử đi b

24 tháng 8 2017

Hay là thích cách này:)

\(x^3-6x^2+12x-7=\sqrt[3]{-x^3+9x^2-19x+11}\)

\(\Leftrightarrow\left(x^3-6x^2+12x-7\right)^3-\left(-x^3+9x^2-19x+11\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x^6-12x^5+61x^4-165x^3+247x^2-189x+59\right)=0\)

\(\Leftrightarrow x=1;2;3\)

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

28 tháng 8 2017

1/ \(x^3+2=3\sqrt[3]{3x-2}\)

Đặt \(\sqrt[3]{3x-2}=a\) thì ta có hệ

\(\hept{\begin{cases}x^3+2-3a=0\\a^3+2-3x=0\end{cases}}\)

Lấy trên - dưới ta được

\(x^3-a^3+3x-3a=0\)

\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)

\(\Leftrightarrow x=a\)

\(\Leftrightarrow x=\sqrt[3]{3x-2}\)

\(\Leftrightarrow x^3-3x+2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

21 tháng 6 2018

cảm ơn

3 tháng 6 2021

a, \(\sqrt{x^2+12x+40}\)

\(=\sqrt{\left(x+6\right)^2+4}\)

Biểu thức trên xác định \(\Leftrightarrow\left(x+6\right)^2+4\ge0\) mà \(\left(x+6\right)^2\ge0\forall x\Rightarrow\left(x+6\right)^2+4\ge4\forall x\)

Vậy biểu thức trên xác định với mọi x

b, \(\frac{1}{\sqrt{9x^2-6x+1}}\)

\(=\frac{1}{\sqrt{\left(3x-1\right)^2}}\)

Biểu thức trên xác định \(\Leftrightarrow\hept{\begin{cases}\left(3x-1\right)^2\ge0\\\left(3x-1\right)^2\ne0\end{cases}}\)

                                        \(\Leftrightarrow\left(3x-1\right)^2\ne0\)vì (3x-1)2 luôn \(\ge\)0 với mọi x

                                        \(\Leftrightarrow3x-1\ne0\Leftrightarrow3x\ne1\Leftrightarrow x\ne\frac{1}{3}\)

Vậy biểu thức trên xác định khi và chỉ khi \(x\ne\frac{1}{3}\)

3 tháng 6 2021

c, \(\sqrt{\left(4x^2+2x+3\right)\left(3-2x\right)}\)

\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}4x^2+2x+3\ge0\\3-2x\ge0\end{cases}}\\\hept{\begin{cases}4x^2+2x+3\le0\\3-2x\le0\end{cases}}\end{cases}}\)Biểu thức trên xác định \(\Leftrightarrow\)\(\hept{\begin{cases}4x^2+2x+3\ge0\\3-2x\ge0\end{cases}}\)(1)  hoặc \(\hept{\begin{cases}4x^2+2x+3\le0\\3-2x\le0\end{cases}}\)(2)

                                            mà \(4x^2+2x+3=\left(2x+\frac{1}{2}\right)^2+\frac{11}{4}\)luôn \(\ge\frac{11}{4}\)\(\forall x\)

                                       \(\Rightarrow\)(2) không thỏa mãn, (1) thỏa mãn 

Từ (1)\(\Rightarrow3-2x\ge0\)(vì \(4x^2+2x+3\)luôn \(\ge0\forall x\))

           \(\Rightarrow3\ge2x\)

            \(\Rightarrow\frac{3}{2}\ge x\)hay\(x\le\frac{3}{2}\)

Vậy biểu thức trên xác định khi và chỉ khi \(x\le\frac{3}{2}\)

d, \(\sqrt{\frac{2x^2+3x+16}{5-7x}}\)

=\(\frac{\sqrt{\left(\sqrt{2}x+\frac{3\sqrt{2}}{4}\right)^2+\frac{119}{8}}}{\sqrt{5-7x}}\)

Biểu thức trên xác định \(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}x+\frac{3\sqrt{2}}{4}\right)^2\\5-7x>0\end{cases}+\frac{119}{8}\ge0}\)

mà \(\left(\sqrt{2}x+\frac{3\sqrt{2}}{4}\right)^2+\frac{119}{8}\ge\frac{119}{8}\forall x\)

\(\Rightarrow\)Biểu thưc trên xác định \(\Leftrightarrow5-7x>0\)\(\Leftrightarrow5>7x\Leftrightarrow\frac{5}{7}>x\)hay \(x< \frac{5}{7}\)

               

20 tháng 4 2017

a) \(\orbr{\orbr{\begin{cases}x\ge\sqrt{5}\\x\le-\sqrt{5}\end{cases}}}\)             b)\(\orbr{\begin{cases}x\ge1\\x\le-3\end{cases}}\)

20 tháng 4 2017

c)\(\orbr{\begin{cases}\hept{\begin{cases}x\ge\sqrt{2}\\x\ne\sqrt{3}\end{cases}}\\\hept{\begin{cases}x\le-\sqrt{2}\\x\ne-\sqrt{3}\end{cases}}\end{cases}}\)

6 tháng 7 2017

a,\(\left(\sqrt{3}-\sqrt{2}\right)+\sqrt{2}=\sqrt{3}\) (vi \(\sqrt{3}>\sqrt{2}\) )

b,\(3\sqrt{5}-\left(\sqrt{5}-1\right)\) =\(3\sqrt{5}-\sqrt{5}+1=2\sqrt{5}+1\)  

c,\(\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

6 tháng 7 2017

Bạn ỏi, bài này mk làm đc rồi nhé ^^. Bạn có cần trợ giúp hông ??? Rất sẵn lòng :)