Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Chia thành nhóm:
Nhóm 1: 3 số
\(\sqrt{1}\leq \sqrt{1},\sqrt{2},\sqrt{3}<\sqrt{4}\)\(\Leftrightarrow 1\leq \sqrt{1},\sqrt{2},\sqrt{3}< 2\)
Do đó, \([\sqrt{1}]=[\sqrt{2}]=[\sqrt{3}]=1\)
Nhóm 2: 5 số\(\sqrt{4} \leq \sqrt{4},\sqrt{5},....,\sqrt{8}<\sqrt{9}\Leftrightarrow 2\leq \sqrt{4},\sqrt{5},...,\sqrt{8}< 3\)
\(\Rightarrow [\sqrt{4}]=[\sqrt{5}]=...=[\sqrt{8}]=2\)
Nhóm 3: 7 số
\(3\leq \sqrt{9}.\sqrt{10},...,\sqrt{15}< \sqrt{16}=4\)
\(\Rightarrow [\sqrt{9}],[\sqrt{10}],....,[\sqrt{15}]=3\)
Nhóm 4: 9 số
\(4\leq \sqrt{16},\sqrt{17},...,\sqrt{24}< \sqrt{25}=5\)
\(\Rightarrow [\sqrt{16}]=[\sqrt{17}]=...=[\sqrt{24}]=4\)
Nhóm 5: 11 số
\(5\leq \sqrt{25},\sqrt{26},....\sqrt{35}<\sqrt{36}=6\)
\(\Rightarrow [\sqrt{25}]=[\sqrt{26}]=...=[\sqrt{35}]=5\)
Do đó:
\([\sqrt{1}]+[\sqrt{2}]+....+[\sqrt{35}]=3.1+5.2+7.3+9.4+11.5=125\)
1. Ta có: A = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để A \(\in\)Z <=> \(4⋮\sqrt{x}-3\) <=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Lập bảng:
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
\(\sqrt{x}\) | 4 | 2 | 5 | 1 | 7 | -1 (loại) |
x | 16 | 4 | 25 | 1 | 49 |
Vậy ....
2. Ta có: B = \(\frac{x^2+15}{x^2+3}=\frac{\left(x^2+3\right)+12}{x^2+3}=1+\frac{12}{x^2+3}\)
Do x2 + 3 \(\ge\)3 \(\forall\)x => \(\frac{12}{x^2+3}\le4\forall x\)
=> \(1+\frac{12}{x^2+3}\le5\forall x\)
Dấu "=" xảy ra <=> x = 0
Vậy Max B = 5 khi x = 0
Ta có căn(x + 5) + 2/11 >= 2/11 (vì căn (x+5) >= 0)
Vậy A đạt giá trị nhỏ nhất là 2/11 khi và chỉ khi x = -5
Ta có : 3/19 - 3.căn(x - 2) <= 3/19 ( vì -3.căn(x-2) <= 0)
Vậy B đạt giá trị lớn nhất là 3/19 khi và chỉ khi x = 5
C = (căn - 3)/2 có giá trị nguyên nên (căn - 3) chia hết cho 2
Suy ra x là số chính phương lẻ
Vì x < 50 nên x thuộc { 1^2;3^2;5^2;7^2} hay x thuộc {1;9;25;49}