Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)
k nếu đúng nhé!
Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)
với p.q là số nguyên tố lớn hơn 5 chứng minh rằng p4-q4 chia hếcho 240
giúp mình với nhé
\(\frac{2}{3}a=\frac{3}{4}b\Rightarrow a=\frac{3}{4}b:\frac{2}{3}\Rightarrow a=\frac{9}{8}b\Rightarrow a^2=\left(\frac{9}{8}b\right)^2\Rightarrow a^2=\left(\frac{9}{8}\right)^2\cdot b^2\Rightarrow a^2=\frac{81}{64}b^2\)
Ta có:
\(a^2-b^2=68\Rightarrow\frac{81}{64}b^2-b^2=68\Rightarrow\frac{17}{64}b^2=68\Rightarrow b^2=68:\frac{17}{64}\Rightarrow b^2=16\Rightarrow b=4\)
\(\Rightarrow a=\frac{81}{64}b=\frac{81}{64}:4=\frac{81}{16}\)
=> Vậy : \(a=\frac{81}{16};b=4\)
Vì A là số tự nhiên \(\Rightarrow\) \(A=\frac{n^2+3n}{8}\in N\Rightarrow n^2+3n⋮8\)
\(\Rightarrow n.\left(n+3\right)⋮8\)
Mặt khác (n+3) - n =3 là số lẻ \(\Rightarrow\) n+3 và n không cùng tính chẵn lẻ
\(\Rightarrow\orbr{\begin{cases}n⋮8\\n+3⋮8\end{cases}}\)
TH1 : \(n⋮8\Rightarrow n=8k\)( k \(\in\)N* ) \(\Rightarrow A=\frac{\left(8k\right)^2+8k.3}{8}=8k^2+3k=k.\left(8k+3\right)\)
Mà A là số nguyên tố \(\Rightarrow\)k.(8k+3) là số nguyên tố (1)
Lại có k \(\in\) N* \(\Rightarrow8k+3\in\)N*
8k+3 > k kết hợp (1)
\(\Rightarrow\hept{\begin{cases}k=1\\8k+3laSNT\end{cases}\Rightarrow8k+3=8.1.3=11}\)là SNT ( t/m)
\(\Rightarrow n=8.1=8\)
TH2: \(n+3⋮8\Rightarrow n+3=8k\)( k \(\in\) N* )
\(\Rightarrow n=8k-3\Rightarrow A=\frac{\left(8k-3\right)^2+3.\left(8k-3\right)}{8}\)
\(=\frac{\left(8k-3\right).\left(8k-3+3\right)}{8}=\frac{\left(8k-3\right).8k}{8}=k.\left(8k-3\right)\)
Mà A là SNT \(\Rightarrow k.\left(8k-3\right)\)là SNT (2)
Lại có : k\(\in\)N*\(\Rightarrow k\ge1\Rightarrow8k-3\ge5>0\)
k \(\in\)N* \(\Rightarrow8k-3\)\(\in\)Z ( ngoặc 2 dòng )
\(\Rightarrow8k-3\in\)N* kết hợp (2)
\(\Rightarrow\)+) k=1 và 8k-3 là SNT \(\Rightarrow\)k=1 và 8k-3=8.1-3=5 là SNT \(\Rightarrow n=5\)
+) 8k-3 =1 và k là SNT \(\Rightarrow\)k \(\notin\)N* mà k là SNT ( loại )
Vậy \(n\in\left\{5;8\right\}\)
( lưu ý nhé có chỗ ko viết được TV nên tui ghi ko có dấu )