K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2019

có bạn nào giải hộ mik nhé!

12 tháng 9 2019

Ta có tính chất: Hiệu của một số với tổng các chữ số của nó chia hết cho 9

( xem cách chứng minh tại link Câu hỏi của Nguyễn Phương Chi - Toán lớp 6 - Học toán với OnlineMath )

Do đó ta có:

 \(A-S\left(A\right)⋮9\)

\(S\left(A\right)-S\left(S\left(A\right)\right)⋮9\)

\(S\left(S\left(A\right)\right)-S\left(S\left(S\left(A\right)\right)\right)⋮9\)

=> Cộng lại và triệt tiêu ta có: \(A-S\left(S\left(S\left(A\right)\right)\right)⋮9\)(1)

Ta có: \(A=2^{100}=2.2^{99}=2.8^{33}\)=> Số chữ số của A < 34

=> \(S\left(A\right)< 34.9=306\)

=> \(S\left(S\left(A\right)\right)< 3.9=27\)

=> \(S\left(S\left(S\left(A\right)\right)\right)< 2.9=18\) (2)

Mặt khác \(A=2^{100}=2.2^{99}=2.8^{33}\equiv2\left(-1\right)^{33}\equiv-2\equiv7\left(mod9\right)\)

=> \(A-7⋮9\)(3)

Từ (1); (2); (3) => S(S(S(A))) có thể bằng 7 hoặc 16

=> S(S(S(S(A)))) = 7

:)))) . Bài này thú vị quá! <3

12 tháng 9 2019

Câu 2.

Câu hỏi của hoang the cuong - Toán lớp 8 - Học toán với OnlineMath

22 tháng 7 2020

Ta thấy: \(2017^{2016}\equiv1\)(mod 6)

Từ đó: (1 <= i <= k) \(\text{Σ}n_i\equiv1\)(mod 6)

Dễ chứng minh: \(\left(6k+m\right)^3\equiv m\equiv6k+m\)(mod 6) với 0<=m<=6

Từ đó ta có: \(x^3\equiv x\)(mod 6) với x là số tự nhiên

Vậy \(\text{Σ}n_i^3\equiv\text{Σ}n_i\equiv1\)(mod 6)

Vậy \(\text{Σ}n_i^3\)chia 6 dư 1

22 tháng 7 2020

ta có: \(N=2017^{2016}\)

xét \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)\)là tích 3 số nguyên liên tiếp nên a3-a chia hết cho 6 với mọi a

đặt N=\(n_1+n_2+...+n_k=2017^{2016}\)

\(\Rightarrow S-N=\left(n_1^5+n_2^3+....+n_k^3\right)-\left(n_1+....+n_k\right)=\left(n_1^3-n_1\right)+\left(n_2^3-n_2\right)+....+\left(n_k^3-n_k\right)\)

\(\Rightarrow S-N⋮6\)

=> S và N cùng số dư khi chia cho 6

thấy 2017 chia 6 dư 1

20172016 chia 6 dư 1 => N chia 6 dư 1

=> S chia 6 dư 1

18 tháng 9 2019

1) a. Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath

30 tháng 5 2016

Ta giải như sau :

Ta có \(S\left(n\right)+n=2015\)(1)

\(\Rightarrow n< 2015\)(2)

Mặt khác ta lại có : \(S\left(n\right)\le1+9.3=28\)

\(\Rightarrow n\ge2015-28=1987\)(3)

Từ (2) và (3) ta có : \(1987\le n< 2015\)

Do đó ta xét n trong khoảng trên được n = 2011 và n = 1993 là đáp số của bài.

13 tháng 8 2020

a,

\(2^2=\left(1+1\right)^2=1^2+2.1+1\)

\(3^2=\left(2+1\right)^2=2^2+2.2+1\)

....

\(\left(n+1\right)^2=n^2+2n+1\)

Cộng theo từng vế của các đẳng thức:

\(2^2+3^2+...+\left(n+1\right)^2=1^2+2^2+...+n^2+2\left(1+2+...+n\right)+n\)

\(\Leftrightarrow\left(n+1\right)^2=1+2S+n\)

\(\Leftrightarrow2S=\left(n+1\right)^2-\left(n+1\right)\)

\(\Leftrightarrow2S=\left(n+1\right)n\)

\(\Leftrightarrow S=\frac{n\left(n+1\right)}{2}\)

b, Tương tự a

\(2^3=\left(1+1\right)^3=1^3+3.1^2+3.1+1\)

\(3^3=\left(2+1\right)^3=2^3+3.2^2+3.2+1\)

...

\(\left(n+1\right)^3=n^3+3n^2+3n+1\)

Cộng theo từng vế của các đẳng thức:

\(2^3+3^3+...+\left(n+1\right)^3=1^3+2^3+...+n^3+3\left(1^2+2^2+...+n^2\right)+3\left(1+2+...+n\right)+n\)

\(\Leftrightarrow\left(n+1\right)^3=1+3S_1+3S+n\)

\(\Leftrightarrow\left(n+1\right)^3-\left(n+1\right)-3S=3S_1\)

\(3S_1=n\left(n+1\right)\left(n+2\right)-\frac{3n\left(n+1\right)}{2}\)

\(\Leftrightarrow3S_1=\frac{n\left(n+1\right)\left(2n+1\right)}{2}\)

\(\Leftrightarrow S_1=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

24 tháng 6 2018

a) 2 +4+6+8+...+2018

= ( 2018+2) x 1009 : 2

= 2020 x 1009 : 2

= 1009 x (2020:2)

= 1009 x 1010

= 1 019 090

b) S = 10 + 102 + 103 + ...+ 10100

=> 10.S = 102 + 103 + 104 +...+ 10101

=> 10.S - S = 10101-10

9.S=10101- 10

\(\Rightarrow S=\frac{10^{101}-10}{9}\)

c) \(S=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)

\(\Rightarrow5S=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

\(5S-S=1-\frac{1}{5^{100}}\)

\(4S=1-\frac{1}{5^{100}}\)

\(S=\frac{1-\frac{1}{5^{100}}}{4}\)

e cx ko nx, e ms hok lp 7 thoy, sang hè ms lp 8! e sr cj nhiều nha!

24 tháng 6 2018

d) \(S=\frac{1!}{3!}+\frac{2!}{4!}+\frac{3!}{5!}+...+\frac{2018!}{2020!}\)

\(S=\frac{1}{1.2.3}+\frac{1.2}{1.2.3.4}+\frac{1.2.3}{1.2.3.4.5}+...+\frac{1.2.3...2018}{1.2.3...2020}\)

\(S=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2019.2020}\)

\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(S=\frac{1}{2}-\frac{1}{2020}\)

\(S=\frac{1009}{2020}\)