\(\in N^x\) sao cho 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2018

Bạn xem bài làm ở đây:

https://olm.vn/hoi-dap/detail/40718880788.html

Học tốt

18 tháng 9 2017

Toshiro Kiyoshi nhờ you

18 tháng 9 2017

Toshiro Kiyoshi câu 2 thôi nha

19 tháng 6 2016

xét với mọi n thuộc N thì A:2 vì vậy ta cần tìm n để n:3n 
xét để A: 3 thì n không có dạng 3k+2 để A:3(k thuộc N) 
A=n^2+11n+30 
để A:n thì n thuộc ước 30 mà ước thuộc N của 30 là 
1,2,3,5,6,10,15,30 
trong đó 2,5 có dạng 3k+2 nên ta loại 
vậy n là 1,3,6,10,15,30

19 tháng 6 2016

câu 2: 

Giả sử f(x)=ax2+bx+cf(x)=ax2+bx+c (do đề bài cho là đa thức bậc hai)
Suy ra

f(x)f(x1)=ax2+bx+ca(x1)2b(x1)c=2ax+a+bf(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+b

Mà f(x)f(x1)=xf(x)−f(x−1)=x

2ax+a+b=x⇒2ax+a+b=x

Do đó a+b=0a+b=0 và a=1/2a=1/2 từ đó ta suy ra a=1/2;b=1/2a=1/2;b=−1/2

Do đó f(x)=\(\frac{x^2}{2}-\frac{x}{2}+c\)

f(n)=1+2+3+...+nf(n)=1+2+3+...+n

Áp dụng điều ta vừa chứng minh được thì:
f(1)f(0)=1f(1)−f(0)=1

f(2)f(1)=2f(2)−f(1)=2

....

f(n)f(n1)=nf(n)−f(n−1)=n

Do đó

1+2+...+n=f(1)f(0)+f(2)f(1)+...+f(n)f(n1)=f(n)f(0)=\(\frac{n^2}{2}-\frac{n}{2}\)=\(\frac{n\left(n-1\right)}{2}\)

2 tháng 2 2020

2. Ta có: n + S ( n ) + S ( S (n) ) = 60

Có: n \(\ge\)S ( n ) \(\ge\)S ( S (n) ) 

=> n + n + n  \(\ge\)n + S ( n ) + S ( S (n) ) \(\ge\)60

=> 3n \(\ge\)60

=> n \(\ge\)20

=> 20 \(\le\)\(\le\)60 

Đặt: n = \(\overline{ab}\)

=> \(2\le a\le6\)

và \(2+0\le a+b\le5+9\)

=> \(2\le a+b\le14\)

a + b234567891011121314
\(\overline{ab}\)56545250484644424047454341
 loạiloạiloạitmloạiloạitmloạiloạitmloạiloạiloại

Vậy n = 50; n = 44 hoặc n = 47

2 tháng 2 2020

1. Ta có: a + 3c = 2016 ; a + 2b = 2017

=> a + 3c + a + 2b = 2016 + 2017

=> 2a + 2b + 2c + c = 4033

=> 2 ( a + b + c ) = 4033 - c 

mà a, b, c không âm 

=> c \(\ge\)0

Để P = a + b + c  đạt giá trị lớn nhất 

<=> 2 ( a + b + c ) đạt giá trị lớn nhất

<=> 4033 - c đạt giá trị lớn nhất 

<=> c đạt giá trị bé nhất

=> c = 0

=> a = 2016 ; b = ( 2017 - 2016 ) : 2 = 1/2

Vậy max P = 0 + 2016 + 1/2 = 4033/2