Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)
\(=\dfrac{4+6-3}{n-1}\)
\(=\dfrac{7}{n-1}\)
Để A là số tự nhiên thì \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;7\right\}\)
hay \(n\in\left\{2;8\right\}\)
Vậy: \(n\in\left\{2;8\right\}\)
ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2 Để B là STN thì 4n+10⋮n+2 4n+8+2⋮n+2 4n+8⋮n+2 ⇒2⋮n+2 n+2∈Ư(2) Ư(2)={1;2} Vậy n=0
A = \(\dfrac{n^9+1}{n^{10}+1}\)
\(\dfrac{1}{A}\) = \(\dfrac{n^{10}+1}{n^9+1}\) = n - \(\dfrac{n-1}{n^9+1}\)
B = \(\dfrac{n^8+1}{n^9+1}\)
\(\dfrac{1}{B}\) = \(\dfrac{n^9+1}{n^8+1}\) = n - \(\dfrac{n-1}{n^8+1}\)
Vì n > 1 ⇒ n - 1> 0
\(\dfrac{n-1}{n^9+1}\) < \(\dfrac{n-1}{n^8+1}\)
⇒ n - \(\dfrac{n-1}{n^9+1}\) > n - \(\dfrac{n-1}{n^8+1}\)⇒ \(\dfrac{1}{A}>\dfrac{1}{B}\)
⇒ A < B
a)\(\dfrac{-8}{9}< \dfrac{-7}{9}\\ \dfrac{6}{7}< \dfrac{11}{10}\)
\(A=\dfrac{10}{a^m}+\dfrac{10}{a^n}\)
\(=\dfrac{10a^n+9a^m+a^m}{a^ma^n}\)
\(B=\dfrac{11}{a^m}+\dfrac{9}{a^n}\)
\(=\dfrac{10a^n+a^n+9a^m}{a^ma^n}\)
+ Nếu m > n thì am > an. \(\Rightarrow\) \(\dfrac{10a^n+9a^m+a^m}{a^ma^n}>\dfrac{10a^n+a^n+9a^m}{a^ma^n}\) hay A > B
+ Nếu m < n thì am < an. \(\Rightarrow\) \(\dfrac{10a^n+9a^m+a^m}{a^ma^n}< \dfrac{10a^n+a^n+9a^m}{a^ma^n}\) hay A < B
+ Nếu m = n thì am = an. \(\Rightarrow\) \(\dfrac{10a^n+9a^m+a^m}{a^ma^n}=\dfrac{10a^n+a^n+9a^m}{a^ma^n}\) hay A = B
a, Ta có :
\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{1\cdot2\cdot3\cdot4}+...+\dfrac{1}{1\cdot2\cdot3\cdot...\cdot100}\\ < \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}< 1\\ \Rightarrow M< 1\\ \RightarrowĐpcm\)
Lời giải:
a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)
Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$
Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$
Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$
b) Rõ ràng $10^{11}-1< 10^{12}-1$.
Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$
Áp dụng kết quả phần a:
$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$