Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)
a)thay \(x=2\sqrt{2}\)vào a ra có
\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)
\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)
Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)
a/ Ta có CF vuông góc AB tại F (gt)
Nên góc CFB = 90 độ
BE vuông góc AC tại E
Nên góc BEC = 90 độ
Tứ giác CEFB có hai đỉnh kề F và E cùng nhìn cạnh BC dưới một góc vuông . Do đó tứ giác CEFB nt
Ta có góc BFC = 90(cmt) độ nên tam giác BFC vuông tại F .
góc BEC = 90 độ (cmt)
Nên tam giác BEC vuông tại E
Tam giác vuông BFC và BEC đều có BC là cạnh huyền nên tâm của đường tròn ngoại tiếp tứ giác là trung điểm của cạnh BC .
a: \(\sqrt{\dfrac{3}{2}a^2}=\left|a\right|\cdot\dfrac{\sqrt{6}}{2}\)
b: \(\sqrt{\dfrac{1}{600}}=\dfrac{1}{10\sqrt{6}}=\dfrac{\sqrt{6}}{60}\)
\(\sqrt{\dfrac{11}{540}}=\dfrac{\sqrt{165}}{90}\)
\(\sqrt{\dfrac{3}{50}}=\sqrt{\dfrac{6}{100}}=\dfrac{\sqrt{6}}{10}\)
\(\sqrt{\dfrac{5}{98}}=\sqrt{\dfrac{10}{196}}=\dfrac{1}{14}\cdot\sqrt{10}\)
c: \(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{\sqrt{3}-1}{3\sqrt{3}}=\dfrac{3-\sqrt{3}}{9}\)
d: căn 2/3=căn 6/9=1/3*căn 6
e: \(\sqrt{\dfrac{x^2}{5}}=\sqrt{\dfrac{5x^2}{25}}=\pm\dfrac{x\sqrt{5}}{5}\)
f: \(\sqrt{\dfrac{3}{x}}=\sqrt{\dfrac{3x}{x^2}}=\dfrac{\sqrt{3x}}{\left|x\right|}\)