K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn tự vẽ hình rùi chứng minh dễ mà

5 tháng 7 2016

a)hình thang ABCD có góc C;D là 2 góc đáy lớn

từ A và B ta kẻ AH ; BK vuong goc voi CD 

bn thấy goc A >90 ; B>90

=> C<90 ; D< 90 => C+D <180

b)tổng 2 góc đáy của 1 hình thang luôn < 180o khi và chỉ khi đáy AB<CD

Hình thang ABCD (AB//CD, AB < CD)

Từ hai đỉnh A và B của đáy bé, hạ đường vuông góc AF và BE

Ta được hình vuông ABEF (tự chứng minh)

Ta có: AB // CD

BADˆ+ADCˆ=1800⇒BAD^+ADC^=1800 (Hai góc trong cùng phía) (*)

Lại có: BADˆ=BAFˆ+FADˆBAD^=BAF^+FAD^

BADˆ=900+FADˆ⇔BAD^=900+FAD^

BADˆ>900⇔BAD^>900

Từ (*) BADˆ>ADCˆ⇒BAD^>ADC^ (1)

Chứng minh tương tự, ta được:

ABCˆ>BCDˆ⇒ABC^>BCD^ (2)

Cộng (1) với (2) theo vế, ta được:

BADˆ+ABCˆ>ADCˆ+BCDˆ

17 tháng 8 2019

bạn trả lời cái đéo j vậy

17 tháng 9 2018

a,Hình thang ABCD (AB//CD, AB < CD)

Từ hai đỉnh A và B của đáy bé, hạ đường vuông góc AF và BE

Ta được hình vuông ABEF (tự chứng minh)

Ta có: AB // CD

⇒BADˆ+ADCˆ=180 độ ⇒BAD^+ADC^=180 độ  (Hai góc trong cùng phía) (*)

Lại có: BADˆ=BAFˆ+FADˆBAD^=BAF^+FAD^

⇔BADˆ=90độ +FADˆ⇔BAD^=90độ +FAD^

⇔BADˆ>90 độ ⇔BAD^>90 độ 

Từ (*) ⇒BADˆ>ADCˆ⇒BAD^>ADC^ (1)

Chứng minh tương tự, ta được:

⇒ABCˆ>BCDˆ⇒ABC^>BCD^ (2)

Cộng (1) với (2) theo vế, ta được:

⇒BAD^+ABC^>ADCˆ+BCDˆ⇒BAD^+ABC^>ADC^+BCD^

⇒đpcm vậy ...

cái chóp này " ^ " là góc nhá bạn,mk chỉ làm đc câu a thui 

20 tháng 9 2017

Lê Cảnh Bảo Long bn tham khảo nha:

a, Chứng minh rằng trong một tứ giác, mỗi đường chéo lớn hơn nửa chu vi tứ giác đó . 
Phải là: mỗi đường chéo nhỏ hơn nửa chu vi tứ giác đó 

cho tứ giác ABCD ta có AC< AB + BC (1) ( trong tam giác tổng 2 cạnh lớn hơn cạnh thứ 3) 
và AC<AD+DC (2) (như trên) , cộng hai bất đẳng thức cùng chiều (1) và (2) 
=>2AC < AB + BC + AD + DC = 2p => AC<p chứng minh tương tự ta cũng có BD < p 

b, Chứng minh rằng trong một tứ giác, tổng hai đường chéo 
*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm) 
* giao của AC và BD là O. 
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC 
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC 
cổng 4 bất đẳng thức cùng chiề này lại ta có: 
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA 
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)

15 tháng 8 2016

 Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi tứ giác đó và nhỏ hơn chu vi tứ giác đó: 
*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm) 
* giao của AC và BD là O. 
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC 
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC 
cổng 4 bất đẳng thức cùng chiề này lại ta có: 
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA 
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm) 

15 tháng 8 2016

Bạn tham khảo ở đây : 

/hoi-dap/question/76098.html