Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)hình thang ABCD có góc C;D là 2 góc đáy lớn
từ A và B ta kẻ AH ; BK vuong goc voi CD
bn thấy goc A >90 ; B>90
=> C<90 ; D< 90 => C+D <180
b)tổng 2 góc đáy của 1 hình thang luôn < 180o khi và chỉ khi đáy AB<CD
Hình thang ABCD (AB//CD, AB < CD)
Từ hai đỉnh A và B của đáy bé, hạ đường vuông góc AF và BE
Ta được hình vuông ABEF (tự chứng minh)
Ta có: AB // CD
⇒BADˆ+ADCˆ=1800 (Hai góc trong cùng phía) (*)
Lại có: BADˆ=BAFˆ+FADˆ
⇔BADˆ=900+FADˆ
⇔BADˆ>900
Từ (*) ⇒BADˆ>ADCˆ (1)
Chứng minh tương tự, ta được:
⇒ABCˆ>BCDˆ (2)
Cộng (1) với (2) theo vế, ta được:
⇒BADˆ+ABCˆ>ADCˆ+BCDˆ
a,Hình thang ABCD (AB//CD, AB < CD)
Từ hai đỉnh A và B của đáy bé, hạ đường vuông góc AF và BE
Ta được hình vuông ABEF (tự chứng minh)
Ta có: AB // CD
⇒BADˆ+ADCˆ=180 độ ⇒BAD^+ADC^=180 độ (Hai góc trong cùng phía) (*)
Lại có: BADˆ=BAFˆ+FADˆBAD^=BAF^+FAD^
⇔BADˆ=90độ +FADˆ⇔BAD^=90độ +FAD^
⇔BADˆ>90 độ ⇔BAD^>90 độ
Từ (*) ⇒BADˆ>ADCˆ⇒BAD^>ADC^ (1)
Chứng minh tương tự, ta được:
⇒ABCˆ>BCDˆ⇒ABC^>BCD^ (2)
Cộng (1) với (2) theo vế, ta được:
⇒BAD^+ABC^>ADCˆ+BCDˆ⇒BAD^+ABC^>ADC^+BCD^
⇒đpcm vậy ...
cái chóp này " ^ " là góc nhá bạn,mk chỉ làm đc câu a thui
Lê Cảnh Bảo Long bn tham khảo nha:
a, Chứng minh rằng trong một tứ giác, mỗi đường chéo lớn hơn nửa chu vi tứ giác đó .
Phải là: mỗi đường chéo nhỏ hơn nửa chu vi tứ giác đó
cho tứ giác ABCD ta có AC< AB + BC (1) ( trong tam giác tổng 2 cạnh lớn hơn cạnh thứ 3)
và AC<AD+DC (2) (như trên) , cộng hai bất đẳng thức cùng chiều (1) và (2)
=>2AC < AB + BC + AD + DC = 2p => AC<p chứng minh tương tự ta cũng có BD < p
b, Chứng minh rằng trong một tứ giác, tổng hai đường chéo
*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm)
* giao của AC và BD là O.
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC
cổng 4 bất đẳng thức cùng chiề này lại ta có:
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)
Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi tứ giác đó và nhỏ hơn chu vi tứ giác đó:
*Theo câu 1 thì AC<p và BD < p => AC + BD < 2p tổng 2 đường chéo nhỏ hơn chu vi (đpcm)
* giao của AC và BD là O.
trong tam giác OAB có OB + OA > AB , trong tam giác OBC có OB + OC > BC
trong tam giác OADcó OD + OA > AD , trong tam giác ODC có OD + OC > DC
cổng 4 bất đẳng thức cùng chiề này lại ta có:
2.OB + 2.OD + 2.OA + 2.OC > AB + BC + CD + DA
<=> 2 BD + 2 AC > 2p <=> BD + AC > p tổng 2 đường chéo lớn hơn nửa chu vi (đpcm)