Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\sqrt{2017}-\sqrt{2016}=\dfrac{1}{\sqrt{2016}+\sqrt{2017}}\)
\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)
mà \(\sqrt{2016}+\sqrt{2017}< \sqrt{2016}+\sqrt{2015}\)
nên \(\sqrt{2017}-\sqrt{2016}>\sqrt{2016}-\sqrt{2015}\)
a) Ta có: \(\frac{1}{5}\sqrt{150}=\frac{1}{5}\cdot5\sqrt{6}=\sqrt{6}=\frac{1}{3}\cdot\sqrt{6\cdot9}=\frac{1}{3}\sqrt{54}>\frac{1}{3}\sqrt{51}\)
b) Ta có: \(\frac{1}{2}\sqrt{6}=\sqrt{\frac{6}{4}}< \sqrt{\frac{36}{2}}=6\sqrt{\frac{1}{2}}\)
a) Vì \(5,\left(6\right)< 6\)\(\Rightarrow\)\(\frac{51}{9}< \frac{150}{25}\)
\(\Rightarrow\)\(\sqrt{\frac{51}{9}}< \sqrt{\frac{150}{25}}\)
\(\Rightarrow\)\(\frac{1}{3}\sqrt{51}< \frac{1}{5}\sqrt{150}\)
b) Vì \(1,5< 18\)\(\Rightarrow\)\(\frac{6}{4}< \frac{36}{2}\)
\(\Rightarrow\)\(\sqrt{\frac{6}{4}}< \sqrt{\frac{36}{2}}\)
\(\Rightarrow\)\(\frac{1}{2}\sqrt{6}< 6\sqrt{\frac{1}{2}}\)
a) \(2\sqrt{31}=\sqrt{4.31}=\sqrt{124}>\sqrt{100}=10\\\Rightarrow2\sqrt{31}>10\)
a) Có \(\sqrt{2}< \sqrt{2,25}=1,5\)
\(\sqrt{6}< \sqrt{6,25}=2,5\);
\(\sqrt{12}< \sqrt{12,25}=3,5\);
\(\sqrt{20}< \sqrt{20,25}=4,5\)
=> \(P=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< 1,5+2,5+3,5+4,5=12\)
Vậy P < 12
Answer:
ý a, tham khảo bài làm của @xyzquynhdi
\(\sqrt{2}+\sqrt{3}+\sqrt{5}\)
\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)
\(=\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)
\(=\sqrt{\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+\left(\sqrt{5}\right)^2+2\sqrt{2}\sqrt{3}+2\sqrt{2}\sqrt{5}+2\sqrt{3}\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)
Bài này cũng không dài mìn nghĩ bạn nên làm tất cho đầy đủ chứ làm 1 phần như nayd quá ngắn
a) \(9=6+3=6+\sqrt{9}\)
\(6+2\sqrt{2}=6+\sqrt{8}\)
\(\sqrt{8}< \sqrt{9}\) nên \(6+\sqrt{8}=6+2\sqrt{2}< 6+\sqrt{9}=9\)
b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}=5+\sqrt{24}\)
\(3^2=9=5+4=5+\sqrt{16}\)
\(\sqrt{16}< \sqrt{24}\Rightarrow3^2< \left(\sqrt{2}+\sqrt{3}\right)^2\Rightarrow3< \sqrt{2}+\sqrt{3}\)
c) \(9+4\sqrt{5}=\left(2+\sqrt{5}\right)^2\)
\(16=\left(2+2\right)^2=\left(2+\sqrt{4}\right)^2\)
\(\sqrt{4}< \sqrt{5}\Rightarrow2+\sqrt{4}< 2+\sqrt{5}\Rightarrow\left(2+\sqrt{4}\right)^2=16< \left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)
d) \(\left(\sqrt{11}-\sqrt{3}\right)^2=14-2\sqrt{33}=14-\sqrt{132}\)
\(2^2=14-10=14-\sqrt{100}\)
\(\sqrt{100}< \sqrt{132}\Leftrightarrow-\sqrt{100}>-\sqrt{132}\Leftrightarrow14-\sqrt{100}>14-\sqrt{132}\)
\(\Rightarrow2>\sqrt{11}-\sqrt{3}\)
đề bài là không dùng máy tính ; hoặc là không khai căn chứ
\(A^2=100.51\)
\(B^2=70^2+2+2.70.\sqrt{2}\)
\(B^2-A^2=70^2-\left(10.7\right)^2+\left(2-2.100\right)+2.70\sqrt{2}\)
\(B^2-A^2=2.70\sqrt{2}-2.99=2\left(70\sqrt{2}-99\right)\)
\(C=70.\sqrt{2};D=99\)
\(C^2=2.70^2\)
\(D^2=99^2=\left(70+29\right)^2\)
\(C^2-D^2=2.70^2-\left(70^2+2.70.29+29^2\right)=70^2-2.70.29-29^2=\left(70-29\right)^2-2.29^2=41^2-2.29^2\)\(C^2-D^2=\left(29+12\right)^2-2.29^2=29^2+12^2+2.29.12=12^2+2.29.12-29^2\)\(C^2-D^2=12^2+2.29.12-12^2-17^2-2.12.17\)\(C^2-D^2=2.12\left(29-17\right)-17^2=2.12^2-17^2\)
\(C^2-D^2=2.12^2-12^2-5^2-2.5.12=12^2-2.5.12-5^2\)
\(C^2-D^2=\left(12-5\right)^2-2.5^2=7^2-2.5^2\)
\(C^2-D^2=5^2+2.2.5+2^2-2.5^2=4.5-5^2+2^2\)
\(C^2-D^2=5\left(4-5\right)+4=4+5.\left(-1\right)=4-5=-1\)
........
=> C^2 -D^2 <0
=>C,D >0
=> C<D => C-D<0
=> B^2 -A^2 <0
A,B >0
=> B<A
kết luận
B<A
\(A=10\sqrt{51}\); \(B=70+\sqrt{2}\)
Ta có: \(A^2=5100\)
\(B^2=4900+140\sqrt{2}+2\)
So sánh \(198\) và \(140\sqrt{2}\) vì vì trừ 2 vế cho 4902.
Ta có: \(198^2=39204\)
\(\left(140\sqrt{2}\right)^2=39200\)
Vậy A > B (đpcm)