Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1999+2000}{2000+2001}\)
\(B=\frac{1999}{2000+2001}+\frac{2000}{2000+2001}\)
Vì \(\frac{1999}{2000+2001}< \frac{1999}{2000}\) ; \(\frac{2000}{2000+2001}< \frac{2000}{2001}\)
\(\Rightarrow\)\(B=\frac{1999}{2000+2001}+\frac{2000}{2000+2001}\)< \(A=\frac{1999}{2000}+\frac{2000}{2001}\)
\(\Rightarrow\)B < A
Vậy B < A
vì 2 phan số = 1 nên khi cộng với 1 thì = 2 mà 2= 2 nên 2 phân số bằng nhau
Nhớ nhé:
A=1999x(2000+1) B=(1999+1)x2000
=1999x2000+1999 =1999x2000+2000
Vì 1999<2000=>A<B
Ta có: 1999 x 2001 = 1999 x (2000 + 1) = 1999 x 2000 + 1999 x 1
2000 x 2000 = 2000 x (1999 + 1) = 2000 x 1999 + 2000 x 1
Vì 1999 x 2000 + 1999 < 2000 x 1999 + 2000 nên 1999 x 2001 < 2000 x 2000
Ta có: \(\frac{1999x2000}{1999x2000+1}=\frac{1999x2000+1-1}{1999x2000+1}=1-\frac{1}{1999x2000+1}\)
\(\frac{2000x2001}{2000x2001+1}=\frac{2000x2001+1-1}{2000x2001+1}=1-\frac{1}{2000x2001+1}\)
Nhận thấy: \(\frac{1}{1999x2000+1}>\frac{1}{2000x2001+1}\)=> \(1-\frac{1}{1999x2000+1}< 1-\frac{1}{2000x2001+1}\)
=> \(\frac{1999x2000}{1999x2000+1}=\frac{2000x2001}{2000x2001+1}\)
\(\frac{1999x2000}{1999x2000+1}< \frac{2000x2001}{2000x2001+1}\)
đề lạ zậy ko so sánh mà bảo so sánh!!!!!!! chả hỉu *_*!
765885
Ta có
B= 2000/2001+2002 + 2001/2001+2002.
Mà 2000/2001+2002 < 2000/2001 và 2001/2001+2002 < 2001/2002.
Nên 2000/2001+2002 + 2001/ 2001+2002 < 2000/2001 + 2001/2002.
Hay 2000+2001/ 2001+2002 < 2000/2001 + 2001/2002
Suy ra B < A
Ta có : 2000/2001 > 2000/ 2001 + 2002 (1)
2001/2002 > 2001/2001+2002(2)
Cộng các bất đẳng thức (1) và (2) vế với nhau:
Vậy 2000/2001 + 2001/2002> 2000/2001+2002 hay A > B
Dễ:
M=1999x(2000+1) N=2000x(1999+1)
M=1999x2000+1999x1 N=2000x1999+2000x1
Ta có:1999x1<2000x1
Cả M và N đều có chung 1999x2000
Suy ra M<N
Ta có M = 1999 x 2001 = 1999 x ( 2000 + 1)
suy ra M = 1999 x 2000 + 1999 (1)
Mặt khác : N = 2000 x 2000 = 2000 x ( 1999 + 1 )
suy ra : N = 2000 x 1999 + 2000 (2)
Từ ( 1) và (2) suy ra N > M
Từ (1) và (2) suy ra N >