Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(2000=a\)
\(A=a^9\\ B=\left(a-4\right)\left(a-3\right)\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\\ B=\left(a^2-16\right)\left(a^2-9\right)\left(a^2-4\right)\left(a^2-1\right)a< a.a^2.a^2.a^2.a^2=a^9\\ B=\left(a-8\right)\left(a-6\right)\left(a-4\right)\left(a-2\right)a\left(a+2\right)\left(a+4\right)\left(a+6\right)\left(a+8\right)\\ C=\left(a^2-64\right)\left(a^2-36\right)\left(a^2-16\right)\left(a^2-4\right)a\\ C< \left(a^2-9\right)\left(a^2-4\right)\left(a^2-1\right)a< a.a^2.a^2.a^2=a^9\\ D=\left(a-20\right)\left(a-15\right)\left(a-10\right)\left(a-5\right)a\left(a+5\right)\left(a+10\right)\left(a+15\right)\left(a+20\right)\\ D=\left(a^2-400\right)\left(a^2-225\right)\left(a^2-100\right)\left(a^2-25\right)a\\ D< \left(a^2-64\right)\left(a^2-36\right)\left(a^2-16\right)\left(a^2-4\right)a< a.a^2.a^2.a^2=9\)
Vậy \(D< C< B< A\)
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)
Thay \(x=\frac{1}{9}\) vào A ta có:
\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)
2. \(B=...\)
\(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{\sqrt{x}+3}{-6}\)
Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)
hay \(P\le-\frac{1}{2}\)
Dấu "=" xảy ra <=> x=0
a: f(1)=-1,5
f(2)=-6
f(3)=-13,5
=>f(1)>f(2)>f(3)
b: \(f\left(-3\right)=-1,5\cdot9=-13,5\)
f(-2)=-1,5x4=-6
f(-1)=-1,5x1=-1,5
=>f(-3)<f(-2)<f(-1)
c: Hàm số này đồng biến khi x<0 và nghịch biến khi x>0
a) Thay x = 25 vào biểu thức A , ta có
\(A=\frac{5-2}{5-1}=\frac{3}{4}\)
b) \(B=\frac{x-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{4\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B =\frac{x+1+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B =\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
a, Ta có : \(x=25\Rightarrow\sqrt{x}=5\)
Thay vào biểu thức A ta được :
\(A=\frac{5-2}{5-1}=\frac{3}{4}\)
Vậy với x = 25 thì A = 3/4
b, Với \(x\ge0;x\ne1\)
\(B=\frac{x-5}{x-1}-\frac{2}{\sqrt{x}+1}+\frac{4}{\sqrt{x}-1}\)
\(=\frac{x-5-2\left(\sqrt{x}-1\right)+4\left(\sqrt{x}+1\right)}{x-1}=\frac{x-5-2\sqrt{x}+2+4\sqrt{x}+4}{x-1}\)
\(=\frac{x+1+2\sqrt{x}}{x-1}=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}\pm1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
c, Ta có P = A/B hay \(P=\frac{\sqrt{x}-2}{\sqrt{x}-1}.\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)
\(\sqrt{P}< \frac{1}{2}\)hay \(\sqrt{\frac{\sqrt{x}-2}{\sqrt{x}+1}}< \frac{1}{2}\Rightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}< \frac{1}{4}\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}-\frac{1}{4}< 0\Leftrightarrow\frac{4\sqrt{x}-8-\sqrt{x}-1}{4\left(\sqrt{x}+1\right)}< 0\)
\(\Rightarrow3\sqrt{x}-9>0\)do \(4\left(\sqrt{x}+1\right)>0\)
\(\Leftrightarrow3\sqrt{x}>9\Leftrightarrow\sqrt{x}>3\Leftrightarrow x>9\)
a/ \(P=12\)
b/ \(Q=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c/ Ta có:
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Dấu = xảy ra khi x = 3 (thỏa tất cả các điều kiện )
a. Thay x = 3 vào biểu thức P ta được :
\(p=\frac{x+3}{\sqrt{x}-2}=\frac{9+3}{\sqrt{9}-2}=12\)
b, \(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c, Ta có :
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Vậy GTNN \(\frac{P}{Q}=2\sqrt{3}\) khi và chỉ khi \(x=3\)
mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia
Đặt \(2000=a\)
\(A=a^9\\ B=\left(a-4\right)\left(a-3\right)\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\\ B=\left(a^2-16\right)\left(a^2-9\right)\left(a^2-4\right)\left(a^2-1\right)a< a.a^2.a^2.a^2.a^2=a^9\\ B=\left(a-8\right)\left(a-6\right)\left(a-4\right)\left(a-2\right)a\left(a+2\right)\left(a+4\right)\left(a+6\right)\left(a+8\right)\\ C=\left(a^2-64\right)\left(a^2-36\right)\left(a^2-16\right)\left(a^2-4\right)a\\ C< \left(a^2-9\right)\left(a^2-4\right)\left(a^2-1\right)a< a.a^2.a^2.a^2=a^9\\ D=\left(a-20\right)\left(a-15\right)\left(a-10\right)\left(a-5\right)a\left(a+5\right)\left(a+10\right)\left(a+15\right)\left(a+20\right)\\ D=\left(a^2-400\right)\left(a^2-225\right)\left(a^2-100\right)\left(a^2-25\right)a\\ D< \left(a^2-64\right)\left(a^2-36\right)\left(a^2-16\right)\left(a^2-4\right)a< a.a^2.a^2.a^2=9\)
Vậy \(D< C< B< A\)