\(\frac{19-5\sqrt{3}}{3}\)và B=2
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2016

Giả sử A > B

<=> 19 >\(5\sqrt{3}+6\sqrt{2}\)

<=> (6 + 3 - \(2\sqrt{3}\sqrt{6}\)

) + (10 - 5\(\sqrt{3}\))>0

<=> (\(\sqrt{6}-\sqrt{3}\))2 + (10 - \(5\sqrt{3}\))>0

Mà 10 - 5\(\sqrt{3}\)> 10 - 5\(\sqrt{4}\) = 0

Vậy A > B

5 tháng 9 2020

a) Ta có: \(\frac{1}{5}\sqrt{150}=\frac{1}{5}\cdot5\sqrt{6}=\sqrt{6}=\frac{1}{3}\cdot\sqrt{6\cdot9}=\frac{1}{3}\sqrt{54}>\frac{1}{3}\sqrt{51}\)

b) Ta có: \(\frac{1}{2}\sqrt{6}=\sqrt{\frac{6}{4}}< \sqrt{\frac{36}{2}}=6\sqrt{\frac{1}{2}}\)

5 tháng 9 2020

a) Vì  \(5,\left(6\right)< 6\)\(\Rightarrow\)\(\frac{51}{9}< \frac{150}{25}\)

                                    \(\Rightarrow\)\(\sqrt{\frac{51}{9}}< \sqrt{\frac{150}{25}}\)

                                    \(\Rightarrow\)\(\frac{1}{3}\sqrt{51}< \frac{1}{5}\sqrt{150}\)

b) Vì  \(1,5< 18\)\(\Rightarrow\)\(\frac{6}{4}< \frac{36}{2}\)

                                 \(\Rightarrow\)\(\sqrt{\frac{6}{4}}< \sqrt{\frac{36}{2}}\)

                                 \(\Rightarrow\)\(\frac{1}{2}\sqrt{6}< 6\sqrt{\frac{1}{2}}\)

29 tháng 1 2022

a) Có \(\sqrt{2}< \sqrt{2,25}=1,5\)

\(\sqrt{6}< \sqrt{6,25}=2,5\)

\(\sqrt{12}< \sqrt{12,25}=3,5\)

\(\sqrt{20}< \sqrt{20,25}=4,5\)

=> \(P=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< 1,5+2,5+3,5+4,5=12\)

Vậy P < 12

30 tháng 1 2022

Answer:

ý a, tham khảo bài làm của @xyzquynhdi

\(\sqrt{2}+\sqrt{3}+\sqrt{5}\)

\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)

\(=\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)

\(=\sqrt{\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+\left(\sqrt{5}\right)^2+2\sqrt{2}\sqrt{3}+2\sqrt{2}\sqrt{5}+2\sqrt{3}\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)

24 tháng 6 2018

a) Ta có:

\(6\sqrt{5}=\sqrt{5\cdot36}=\sqrt{180}\)

\(5\sqrt{6}=\sqrt{6\cdot25}=\sqrt{200}\)

Mà \(\sqrt{180}< \sqrt{200}\)

Vậy: \(6\sqrt{5}< 5\sqrt{6}\)

x) Ta có: \(\sqrt{8}< \sqrt{9}\Rightarrow\sqrt{8}< 3\)

Công hai vế của BĐT cho 3: 

Suy ra: \(\sqrt{8}+3< 3+3=6\)

Vậy: \(\sqrt{8}+3< 6\)

b) Ta có:

\(\sqrt{2\sqrt{3}}=\sqrt[4]{12}\)

Tương tự: \(\sqrt{3\sqrt{2}}=\sqrt[4]{18}\)

Mà \(\sqrt[4]{18}>\sqrt[4]{12}\)

Vậy.....

d) Ta có: 

\(2\sqrt{5}-5=\sqrt{5}+\sqrt{5}-5=\left(\sqrt{5}-2\right)+\left(\sqrt{5}-3\right)>\sqrt{5}-3\)

Vậy ......

e) Ta có: 

\(\sqrt{2}-2=\frac{3\sqrt{2}-6}{3}\)

\(\sqrt{3}-3=\frac{2\sqrt{3}-6}{2}\)

Mà \(3\sqrt{2}>2\sqrt{3}\)

Vậy .....

f) ........... Đang thinking

24 tháng 10 2019

đang dùng máy tínhmaf

18 tháng 12 2016

Ta có :\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{25}}\left(1\right);\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{25}}\left(2\right);\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{25}}\left(3\right);...;\frac{1}{\sqrt{24}}>\frac{1}{\sqrt{25}}\left(24\right);\frac{1}{\sqrt{25}}=\frac{1}{\sqrt{25}}\left(25\right)\)

Cộng các vế từ (1) -> (25),ta có :\(A>\frac{1}{\sqrt{25}}.25=\frac{25}{5}=5\)

P/S : Theo cách làm trên,ta có công thức tổng quát :\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n-1}}+\frac{1}{\sqrt{n}}>\sqrt{n}\left(n\in N;n>1\right)\)

3 tháng 7 2017

a) Ta thấy:
\(\left(3+\sqrt{5}\right)^2=\left(\sqrt{9}+\sqrt{5}\right)^2=9+5+2\sqrt{45}=14+2\sqrt{45}\)
\(\left(2\sqrt{2}+\sqrt{6}\right)^2=\left(\sqrt{8}+\sqrt{6}\right)^2=8+6+2\sqrt{48}=14+2\sqrt{48}\)
Vì \(45< 48\)
\(\Rightarrow\sqrt{45}< \sqrt{48}\)
\(\Rightarrow2\sqrt{45}< 2\sqrt{48}\)
\(\Rightarrow14+2\sqrt{45}< 14+2\sqrt{48}\)
\(\Rightarrow\left(3+\sqrt{5}\right)^2< \left(2\sqrt{2}+\sqrt{6}\right)^2\)
Do \(3+\sqrt{5}>0;2\sqrt{2}+\sqrt{6}>0\)
\(\Rightarrow3+\sqrt{5}< 2\sqrt{2}+6\)

3 tháng 7 2017

b) Ta thấy:
Vì \(26>3\)
\(\Rightarrow\sqrt{26}>\sqrt{3}\)
\(\Rightarrow\sqrt{26}+1>\sqrt{3}\)
\(\Rightarrow\sqrt{27}+\sqrt{26}+1>\sqrt{27}+\sqrt{3}\)
Mà \(\sqrt{27}+\sqrt{3}=3\sqrt{3}+\sqrt{3}=4\sqrt{3}=\sqrt{48}\)
\(\Rightarrow\sqrt{27}+\sqrt{26}+1>\sqrt{48}\)

23 tháng 6 2017

1) \(A=\left(\sqrt{7-\sqrt{21}+4\sqrt{5}}\right)^2=7-\sqrt{21}+4\sqrt{5}\)

\(B=\left(\sqrt{5}-1\right)^2=6-2\sqrt{5}\)

\(\Rightarrow A-B=1-\sqrt{21}+6\sqrt{5}=\left(1+\sqrt{180}\right)-\sqrt{21}>0\)

\(\Rightarrow A>B\Rightarrow\sqrt{7-\sqrt{21}+4\sqrt{5}}>\sqrt{5}-1\)

2) \(C=\left(\sqrt{5}+\sqrt{10}+1\right)^2=5+10+1+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}\)

\(=26+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}>26+10>35=\left(\sqrt{35}\right)^2\)

Vậy \(\sqrt{5}+\sqrt{10}+1>\sqrt{35}\)

3) \(\left(\frac{15-2\sqrt{10}}{3}\right)^2=\frac{225-60\sqrt{10}+40}{9}=\frac{265-60\sqrt{10}}{9}=\frac{265}{9}-\frac{20\sqrt{10}}{3}< 15\)

Vậy nên \(\frac{15-2\sqrt{10}}{3}< \sqrt{15}\)