Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\sqrt{7}+\sqrt{15}vs7\)
=> \(\sqrt{7}+\sqrt{15}< 7\)
b ) \(\sqrt{17}+\sqrt{5}+1vs\sqrt{45}\)
=> \(\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)
b, \(\sqrt{17}+\sqrt{5}+1\) và \(\sqrt{45}\)
\(\sqrt{17}+\sqrt{5}+1>\sqrt{16}+\sqrt{4}+1=4+2+1=7\)
\(\sqrt{45}< \sqrt{49}=7\)
\(\Rightarrow\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)
\(\sqrt{7}+\sqrt{11}\)\(+\sqrt{32}+\sqrt{40}\) < 18
k mk nha
Ta có : \(\sqrt{17}>\sqrt{16}\) , \(\sqrt{26}>\sqrt{25}\)
=>\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)
mà \(\sqrt{99}< \sqrt{100}=10\)
=> a > b
a: \(\left(\sqrt{7}+\sqrt{15}\right)^2=22+2\sqrt{105}=7+15+2\sqrt{105}\)
\(7^2=49=7+42\)
mà \(15+2\sqrt{105}< 42\)
nên \(\sqrt{7}+\sqrt{15}< 7\)
b: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)
\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)
mà \(2\sqrt{22}< 15+10\sqrt{3}\)
nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)
Lời giải:
$\sqrt{17}+\sqrt{5}+1> \sqrt{16}+\sqrt{4}+1=4+2+1=7=\sqrt{49}> \sqrt{45}$
\(\sqrt{17}+\sqrt{5}+1\)= 17+5+1=23
\(\sqrt{45}\)=45
23<45
Vậy \(\sqrt{17}+\sqrt{5}+1\)<\(\sqrt{45}\)