Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đặt: A = \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)
\(A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\)
\(\Rightarrow3A=3+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)
\(\Rightarrow3A-A=\left(3+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)\)
\(\Rightarrow2A=3-\frac{1}{3^4}\)
\(\Rightarrow A=\left(3-\frac{1}{3^4}\right):2\)
Giải
1+ 1 /3+1/9+1/27+1/81+1/243+1/729.
Đặt:
S = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
Nhân S với 3 ta có:
S x 3 = 3 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243
Vậy:
S x 3 - S = 3 - 1/243
2S = 2186 / 729
S = 2186 / 729 : 2
S = 1093/729
Ta có: 12/13 = 1 - 1/13
13/14 = 1 - 1/14
Vì 1/13 > 1/14 nên 12/13 < 13/14
số lớn nhất có tổng của tử số và mẫu số bé hơn 1 là 1006/1008
số bé nhất có tổng của tử số và mẫu số bé hơn 1 là 0/2014
1006-0+1=1007 phân số
đáp số:....
Ta có
\(\frac{1}{2}=\frac{1\times3\times5}{2\times3\times5}=\frac{15}{30}\)
\(\frac{1}{3}=\frac{1\times2\times5}{3\times2\times5}=\frac{10}{30}\)
\(\frac{2}{5}=\frac{2\times2\times3}{5\times2\times3}=\frac{12}{30}\)
Hok tốt !!!!!!!!!!!!!!!!!!!
Bài 1
\(\left(1-\dfrac{1}{99}\right)\times\left(1-\dfrac{1}{100}\right)\times...\times\left(1-\dfrac{1}{2006}\right)\)
\(=\dfrac{98}{99}\times\dfrac{99}{100}\times...\times\dfrac{2005}{2006}\)
\(=\dfrac{98}{2006}\)
\(=\dfrac{49}{1003}\)
Bài 2
\(\dfrac{111}{333}=\dfrac{111:111}{333:111}=\dfrac{1}{3}\)
\(\dfrac{2222}{4444}=\dfrac{2222:2222}{4444:2222}=\dfrac{1}{2}\)
Do \(3>2\Rightarrow\dfrac{1}{3}< \dfrac{1}{2}\)
Vậy \(\dfrac{111}{333}< \dfrac{2222}{4444}\)
Bài 1.
\(\left(1-\dfrac{1}{99}\right)\times\left(1-\dfrac{1}{100}\right)\times...\times\left(1-\dfrac{1}{2006}\right)\)
\(=\dfrac{98}{99}\times\dfrac{99}{100}\times...\times\dfrac{2005}{2006}\)
\(=\dfrac{98\times99\times...\times2005}{99\times100\times...2006}\)
\(=\dfrac{98}{2006}\)
\(=\dfrac{49}{1003}\)
Bài 2.
Có: \(\dfrac{111}{333}=\dfrac{111}{3\times111}=\dfrac{1}{3}\)
\(\dfrac{2222}{4444}=\dfrac{2222}{2\times2222}=\dfrac{1}{2}\)
Vì \(\dfrac{1}{3}< \dfrac{1}{2}\) nên \(\dfrac{111}{333}< \dfrac{2222}{4444}\)
A= 1+\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27} +\frac{1}{81}\)
=1+\(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\)
=> 3A-A=(\(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3}+1\))-(1+\(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\))
=>2A=3-\(\frac{1}{3^4}\)
=> A=(3-\(\frac{1}{3^4}\)):2
dùng casio đi bạn , ra ngay ý mà !!