Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{2000}{2001}=1-\frac{1}{2001}\)
\(\frac{2001}{2002}=1-\frac{1}{2002}\)
\(2001< 2002\Rightarrow\frac{1}{2001}>\frac{1}{2001}\)
\(\Rightarrow1-\frac{1}{2001}< 1-\frac{1}{2002}\)
\(\Rightarrow\frac{2000}{2001}< \frac{2001}{2002}\)
ta có:2000/2001=1-1/2001
2001/2002=1-1/2002
mà 2001<2002
suy ra 1/2001>1/2002
suy ra 1-1/2001<1-1/2002
vậy 2000/2001<2001/2002

+ \(\frac{2000}{2001}=\frac{2001-1}{2001}=1-\frac{1}{2001}\)
+ \(\frac{2001}{2002}=\frac{2002-1}{2002}=1-\frac{1}{2002}\)
+ \(\frac{1}{2001}>\frac{1}{2002}\Rightarrow1-\frac{1}{2001}<1-\frac{1}{2002}\Rightarrow\frac{2000}{2001}<\frac{2001}{2002}\)
\(1-\frac{2000}{2001}=\frac{1}{2001}\)
\(1-\frac{2001}{2002}=\frac{1}{2002}\)
Vì \(\frac{1}{2001}>\frac{1}{2002}\) nên \(\frac{2000}{2001}<\frac{2001}{2002}\)

Ta có: 2000/2001 = 1 - 1/2001
2001/2002 = 1 - 1/2002
mà 1/2001 > 1/2002
--> 1 - 1/2001 < 1 - 1/2002
--> 2000/2001 < 2001/2002

B) Ta có : \(1 - \frac{1998}{1999} = \frac{1}{1999} ; 1 - \frac{1999}{2000} = \frac{1}{2000}\)
Vì 1999 < 2000 nên \(\frac{1998}{1999}>\frac{1999}{2000}\) \(\)

13/27 và 7/15
\(\frac{13}{27}\) = 1:\(\frac{27}{13}\)= 1: \(\frac{26+1}{13}\) = 1: ( 2+\(\frac{1}{13}\))
\(\frac{7}{15}\)= 1:\(\frac{15}{7}\)= 1: \(\frac{14+1}{7}\)= 1: ( 2+ \(\frac{1}{7}\))
ta có \(\frac{1}{13}\)< \(\frac{1}{7}\)=> 2+\(\frac{1}{13}\)< 2+ \(\frac{1}{7}\) => 1: ( 2+\(\frac{1}{13}\)) > 1: ( 2+ \(\frac{1}{7}\))
vậy \(\frac{13}{27}\)>\(\frac{7}{15}\)- 2000/2001 và 2001/2002
\(\frac{2000}{2001}\)= \(\frac{2001-1}{2001}\)= 1 - \(\frac{1}{2001}\)
\(\frac{2001}{2002}\)= \(\frac{2002-1}{2002}\)= 1 - \(\frac{1}{2002}\)
ta có \(\frac{1}{2001}\)> \(\frac{1}{2002}\) => 1 - \(\frac{1}{2001}\) < 1 - \(\frac{1}{2002}\)
vậy \(\frac{2000}{2001}\)< \(\frac{2001}{2002}\)

2001/2000=1+1/2000
2002/2001=1+1/2001
Mà 1/2000>1/2001
=>1+1/2000>1+1/2001
hay 2001/2000>2002/2001

phần bù đến 1 của 2000/2001 là 1- 2000/2001=1/2001
phần bù đến 1 của 2001/2002 là 1-2001/2002=1/2002
Vì 1/2001>1/2002 nên 2000/2001<2001/2002

B) Ta có : \(1-\frac{1998}{1999}=\frac{1}{1999};1-\frac{1999}{2000}=\frac{1}{2000}\)
Vì 1999 < 2000 nên \(\frac{1}{1999}>\frac{1}{2000}\)
Hay \(\frac{1998}{1999}>\frac{1999}{2000}\)
A) Ta có : \(1-\frac{13}{27}=\frac{14}{27};1-\frac{27}{41}=\frac{14}{41}\)
Vì 27 < 41 nên \(\frac{1}{27}>\frac{1}{41}\)
Hay \(\frac{13}{27}>\frac{27}{41}\)

a) 2000/ 2002 > 2001/2002
b) 3/5 < 4/9
c) 16/60 < 31/90
cái này mà ko quy đồng thì mới là chuyện lạ có thật!!!

so sánh phần bù:
ta thấy :1-12/13=1/13; 1-13/14=1/14
Vì 1/13>1/14 nên 12/13 < 13/14
ta có : 1-\(\frac{12}{13}\)= \(\frac{1}{13}\)
1-\(\frac{13}{14}\)= \(\frac{1}{14}\)
vì \(\frac{1}{13}\)> \(\frac{1}{14}\)nên \(\frac{12}{13}\)< \(\frac{13}{14}\)
chúc bạn học tốt !!!
\(\dfrac{1999}{2000}=1-\dfrac{1}{2000}\)
\(\dfrac{2000}{2001}=1-\dfrac{1}{2001}\)
Ta có: 2000<2001
=>\(\dfrac{1}{2000}>\dfrac{1}{2001}\)
=>\(-\dfrac{1}{2000}< -\dfrac{1}{2001}\)
=>\(-\dfrac{1}{2000}+1< -\dfrac{1}{2001}+1\)
=>\(\dfrac{1999}{2000}< \dfrac{2000}{2001}\)
Ta sẽ nhân chéo để tạo ra một phép so sánh giữa các tích:
\(1999 \times 2001 \text{so}\&\text{nbsp};\text{v}ớ\text{i} 2000 \times 2000\)Tính toán các tích này:
Vậy ta có phép so sánh:
\(3999999 \text{so}\&\text{nbsp};\text{v}ớ\text{i} 4000000\)Rõ ràng, \(3999999 < 4000000\), do đó \(\frac{1999}{2000} < \frac{2000}{2001}\).
Kết luận: \(\frac{1999}{2000}\) nhỏ hơn \(\frac{2000}{2001}\).