Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Ta có :
\(\overline{34x5y}\) chia hết cho 4 và 9
* Chia hết cho 4 : số có 2 chữ số tận cùng chia hết cho 4 thì chia hết cho 4
\(\Rightarrow\)\(\overline{5y}=52\) hoặc \(\overline{5y}=56\)
Chia hết cho 9 : số có tổng các chữ số chia hết cho 9 thì chia hết cho 9
\(\Rightarrow\)\(3+4+x+5+2\) chia hết cho 9 \(\Rightarrow\)\(14+x\) chia hết cho 9 \(\Rightarrow\)\(x=4\)
Hoặc :
\(\Rightarrow\)\(3+4+x+5+6\) chia hết cho 9 \(\Rightarrow\)\(18+x\) chia hết cho 9 \(\Rightarrow\)\(x=0\) hoặc \(x=9\)
Vậy \(\left(x,y\right)=\left\{\left(4;2\right),\left(0;6\right),\left(9;6\right)\right\}\)
Chúc bạn học tốt ~
\(A-B=\frac{10}{10^{2010}}-\frac{10}{10^{2011}}=\frac{1}{10^{2009}}-\frac{1}{10^{2010}}>0\)
\(\Rightarrow A>B\)
A - B = 10 10 1 1 10 2010 - - 10 10 2009 2010 = > 0 10 2011 => A > B
\(A-B=\frac{10}{10^{2012}}-\frac{10}{10^{2011}}=\frac{1}{10^{2009}}-\frac{1}{10^{2010}}>0\)
\(\Rightarrow A>B\)
\(A=\frac{-9}{10^{2010}}+\frac{-19}{10^{2011}}=\frac{-9}{10^{2010}}+\frac{-9-10}{10^{2011}}=\frac{-9}{10^{2010}}+\frac{-9}{10^{2011}}+\frac{-10}{10^{2011}}\)
\(B=\frac{-9}{10^{2011}}+\frac{-19}{10^{2010}}=\frac{-9}{10^{2011}}+\frac{-9-10}{10^{2010}}=\frac{-9}{10^{2011}}+\frac{-9}{10^{2010}}+\frac{-10}{10^{2010}}\)
Vì \(\frac{-10}{10^{2011}}>\frac{-10}{10^{2010}}\rightarrow A>B\)