Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{2.3}=5+2\sqrt{6}=5+\sqrt{24}\)
\(\left(\sqrt{10}\right)^2=10=5+5=5+\sqrt{25}\)
Vì \(\sqrt{24}< \sqrt{25}\)
=>\(\sqrt{2}+\sqrt{3}< \sqrt{10}\)
b/\(\left(\sqrt{3}+2\right)^2=3+4+4\sqrt{3}=7+4\sqrt{3}\)
\(\left(\sqrt{2}+\sqrt{16}\right)^2=2+16+2\sqrt{2.16}=18+4\sqrt{8}\)
=> \(\sqrt{3}+2< \sqrt{2}+\sqrt{16}\)
c/ \(16=\sqrt{16^2}\)
\(\sqrt{15}.\sqrt{17}=\sqrt{15.17}=\sqrt{\left(16-1\right)\left(16+1\right)}=\sqrt{16^2-1}\)
=> \(16>\sqrt{15}.\sqrt{17}\)
d/\(8^2=64=32+32=32+2\sqrt{256}\)
\(\left(\sqrt{15}+\sqrt{17}\right)^2=15+17+2\sqrt{15.17}=32+2\sqrt{255}\)
=> \(8>\sqrt{15}+\sqrt{17}\)
Ta có \(\sqrt{8}+3< \sqrt{9}+3=3+3=6\)
=> \(\sqrt{8}+3< 6\)
Ta có \(\sqrt{48}< \sqrt{49};\sqrt{35}< \sqrt{36}\)
=> \(\sqrt{48}+\sqrt{35}< \sqrt{49}+\sqrt{46}\)
=> \(\sqrt{48}+\sqrt{35}< 13\)
=> \(\sqrt{48}< 13-\sqrt{35}\)
c) Ta có \(-\sqrt{19}< -\sqrt{17}\)
=> \(\sqrt{31}-\sqrt{19}< \sqrt{31}-\sqrt{17}\)
=> \(\sqrt{31}-\sqrt{19}< \sqrt{36}-17=6-\sqrt{17}\)
d) Ta có \(9=\sqrt{81}\Leftrightarrow\sqrt{81}>\sqrt{80}\);
\(-\sqrt{58}>-\sqrt{59}\)
=> \(\sqrt{81}-\sqrt{58}>\sqrt{80}-\sqrt{59}\)
<=> \(9-\sqrt{58}>\sqrt{80}-\sqrt{59}\)
a) \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)
\(\sqrt{65}-1>\sqrt{64}-1=8-1=7\)
\(\Rightarrow\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)
b) \(\frac{13-2\sqrt{3}}{6}>\frac{13-2\sqrt{4}}{6}=1,5\)
mà 1,52 = 2,25 ; \(\sqrt{2}^2=2\)
\(\Rightarrow1,5>\sqrt{2}\)hay \(\frac{13-2\sqrt{3}}{6}>\sqrt{2}\)
a) Ta có:
\(6\sqrt{5}=\sqrt{5\cdot36}=\sqrt{180}\)
\(5\sqrt{6}=\sqrt{6\cdot25}=\sqrt{200}\)
Mà \(\sqrt{180}< \sqrt{200}\)
Vậy: \(6\sqrt{5}< 5\sqrt{6}\)
x) Ta có: \(\sqrt{8}< \sqrt{9}\Rightarrow\sqrt{8}< 3\)
Công hai vế của BĐT cho 3:
Suy ra: \(\sqrt{8}+3< 3+3=6\)
Vậy: \(\sqrt{8}+3< 6\)
b) Ta có:
\(\sqrt{2\sqrt{3}}=\sqrt[4]{12}\)
Tương tự: \(\sqrt{3\sqrt{2}}=\sqrt[4]{18}\)
Mà \(\sqrt[4]{18}>\sqrt[4]{12}\)
Vậy.....
d) Ta có:
\(2\sqrt{5}-5=\sqrt{5}+\sqrt{5}-5=\left(\sqrt{5}-2\right)+\left(\sqrt{5}-3\right)>\sqrt{5}-3\)
Vậy ......
e) Ta có:
\(\sqrt{2}-2=\frac{3\sqrt{2}-6}{3}\)
\(\sqrt{3}-3=\frac{2\sqrt{3}-6}{2}\)
Mà \(3\sqrt{2}>2\sqrt{3}\)
Vậy .....
f) ........... Đang thinking
a) Có \(\sqrt{2}< \sqrt{2,25}=1,5\)
\(\sqrt{6}< \sqrt{6,25}=2,5\);
\(\sqrt{12}< \sqrt{12,25}=3,5\);
\(\sqrt{20}< \sqrt{20,25}=4,5\)
=> \(P=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< 1,5+2,5+3,5+4,5=12\)
Vậy P < 12
Answer:
ý a, tham khảo bài làm của @xyzquynhdi
\(\sqrt{2}+\sqrt{3}+\sqrt{5}\)
\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)
\(=\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)
\(=\sqrt{\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+\left(\sqrt{5}\right)^2+2\sqrt{2}\sqrt{3}+2\sqrt{2}\sqrt{5}+2\sqrt{3}\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)
a. Ta có : \(\sqrt{8}< \sqrt{9}\) ( vì 8< 9)
hay \(2\sqrt{2}< 3\)
\(\Rightarrow\) \(2\sqrt{2}+6< 3+6\)
hay \(2\sqrt{2}+6< 9\)
b. Ta có : \(\sqrt{6}>\sqrt{4}\) (vì 6 > 4 )
hay \(\sqrt{2.3}>2\)
\(\Rightarrow\) 2\(\sqrt{2.3}\) > 4
\(\Rightarrow\) 2 + \(2\sqrt{2.3}\) + 3 > 9
hay \(\left(\sqrt{2}+\sqrt{3}\right)^2\)> 9
\(\Rightarrow\) \(\sqrt{2}+\sqrt{3}>3\)
c. Ta có: \(\sqrt{80}>\sqrt{49}\) (vì 80>49)
hay \(4\sqrt{5}\) > 7
\(\Rightarrow\) 9 + \(4\sqrt{5}\) > 16
d. Ta có : \(2\sqrt{33}>2\sqrt{25}\) (vì 33> 25 ) hay \(2\sqrt{23}>2.5\)
\(\Rightarrow\) - \(2\sqrt{33}\) < - 2.5
\(\Rightarrow\) 11 - \(2\sqrt{11.3}\) +3 < 11- 2.5 +3
hay \(\left(\sqrt{11}-\sqrt{3}\right)^2\) < 4
\(\Rightarrow\) \(\sqrt{11}-\sqrt{3}< 2\)
a) Có \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)
\(\sqrt{65}-1>\sqrt{64}-1=8-1=7\)
=> \(\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)
b) \(\dfrac{13-2\sqrt{3}}{6}>\dfrac{13-2\sqrt{4}}{6}=1,5\)
Mặt khác (1,5)2 = 2,25 ; \(\left(\sqrt{2}\right)^2=2\)
=> 1,5 > \(\sqrt{2}\) , do đó \(\dfrac{13-2\sqrt{3}}{6}>\sqrt{2}\)