Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A = \cos {75^0}\cos {15^0} = \frac{1}{2}\left[ {\cos \left( {{{75}^0} - {{15}^0}} \right) + \cos \left( {{{75}^0} + {{15}^0}} \right)} \right] \\= \frac{1}{2}.\cos {60^0}.\cos {90^0} = 0\)
\(B = \sin \frac{{5\pi }}{{12}}\cos \frac{{7\pi }}{{12}} = \frac{1}{2}\left[ {\sin \left( {\frac{{5\pi }}{{12}} - \frac{{7\pi }}{{12}}} \right) + \sin \left( {\frac{{5\pi }}{{12}} + \frac{{7\pi }}{{12}}} \right)} \right] \\= \frac{1}{2}\sin \left( { - \frac{{2\pi }}{{12}}} \right).\sin \left( {\frac{{12\pi }}{{12}}} \right) = - \frac{1}{2}\sin \frac{\pi }{6}\sin \pi = 0\)
\(B = \left( {\cos \frac{\pi }{9} + \cos \frac{{5\pi }}{9}} \right) + \cos \frac{{11\pi }}{9} = \left( {2\cos \frac{{\frac{\pi }{9} + \frac{{5\pi }}{9}}}{2}\cos \frac{{\frac{\pi }{9} - \frac{{5\pi }}{9}}}{2}} \right) + \cos \frac{{11\pi }}{9} = 2\cos \frac{\pi }{3}\cos \frac{{2\pi }}{9} + \cos \frac{{11\pi }}{9}\)
\( = \cos \frac{{2\pi }}{9} + \cos \frac{{11\pi }}{9} = 2\cos \frac{{\frac{{2\pi }}{9} + \frac{{11\pi }}{9}}}{2}\cos \frac{{\frac{{2\pi }}{9} - \frac{{11\pi }}{9}}}{2} = 2\cos \frac{{13\pi }}{{18}}\cos \frac{\pi }{2} = 0\)
a) \(\tan ( - {75^ \circ }) = - 2 - \sqrt 3 \)
b) \(\cot \left( { - \frac{\pi }{5}} \right) \approx - 1,376\)
\(a,cos2\alpha=2cos^2\alpha-1=\dfrac{2}{5}\\ \Leftrightarrow cos^2\alpha=\dfrac{7}{10}\Rightarrow cos\alpha=\pm\dfrac{\sqrt{70}}{10}\)
Vì \(-\dfrac{\pi}{2}< \alpha< 0\Rightarrow cos\alpha=\dfrac{\sqrt{70}}{10}\)
Ta có:
\(sin^2\alpha+cos^2\alpha=1\\ \Rightarrow sin^2\alpha=1-\dfrac{7}{10}=\dfrac{3}{10}\\ \Rightarrow sin\alpha=\pm\sqrt{30}10\)
Vì \(-\dfrac{\pi}{2}< \alpha< 0\Rightarrow sin\alpha=-\dfrac{\sqrt{30}}{10}\)
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\dfrac{\sqrt{30}}{10}}{\dfrac{-\sqrt{70}}{10}}=-\dfrac{\sqrt{21}}{7}\\ cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{1}{-\dfrac{\sqrt{21}}{7}}=-\dfrac{\sqrt{21}}{3}\)
\(b,sin^22\alpha+cos^22\alpha=1\\ \Rightarrow cos2\alpha=\sqrt{1-\left(-\dfrac{4}{9}\right)^2}=\pm\dfrac{\sqrt{65}}{9}\)
Vì \(\dfrac{\pi}{2}< \alpha< \dfrac{3\pi}{4}\Rightarrow\pi< 2\alpha< \dfrac{3\pi}{2}\Rightarrow cos2\alpha=-\dfrac{\sqrt{65}}{9}\)
\(cos2\alpha=2cos^2\alpha-1=-\dfrac{\sqrt{65}}{9}\\ \Rightarrow cos\alpha=\pm\sqrt{\dfrac{9-\sqrt{65}}{18}}\)
Vì \(\dfrac{\pi}{2}< \alpha< \dfrac{3\pi}{4}\Rightarrow cos\alpha=-\sqrt{\dfrac{9-\sqrt{65}}{18}}\)
\(sin^2\alpha+cos^2\alpha=1\\ \Rightarrow sin^2\alpha=\dfrac{9+\sqrt{65}}{18}\\ \Rightarrow sin\alpha=\pm\sqrt{\dfrac{9+\sqrt{65}}{18}}\)
Vì \(\dfrac{\pi}{2}< \alpha< \dfrac{3\pi}{4}\Rightarrow sin\alpha=\sqrt{\dfrac{9+\sqrt{65}}{18}}\)
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{\sqrt{\dfrac{9+\sqrt{65}}{18}}}{-\sqrt{\dfrac{9-\sqrt{65}}{18}}}\approx-4,266\\ cot\alpha=\dfrac{1}{tan\alpha}\approx-0,234\)
a) Vì \(0<\alpha <\frac{\pi }{2} \) nên \(\sin \alpha > 0\). Mặt khác, từ \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) suy ra
\(\sin \alpha = \sqrt {1 - {{\cos }^2}a} = \sqrt {1 - \frac{1}{{25}}} = \frac{{2\sqrt 6 }}{5}\)
Do đó, \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{{2\sqrt 6 }}{5}}}{{\frac{1}{5}}} = 2\sqrt 6 \) và \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{\frac{1}{5}}}{{\frac{{2\sqrt 6 }}{5}}} = \frac{{\sqrt 6 }}{{12}}\)
b) Vì \(\frac{\pi }{2} < \alpha < \pi\) nên \(\cos \alpha < 0\). Mặt khác, từ \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) suy ra
\(\cos \alpha = \sqrt {1 - {{\sin }^2}a} = \sqrt {1 - \frac{4}{9}} = -\frac{{\sqrt 5 }}{3}\)
Do đó, \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{2}{3}}}{{-\frac{{\sqrt 5 }}{3}}} = -\frac{{2\sqrt 5 }}{5}\) và \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{-\frac{{\sqrt 5 }}{3}}}{{\frac{2}{3}}} = -\frac{{\sqrt 5 }}{2}\)
c) Ta có: \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{\sqrt 5 }}\)
Ta có: \({\tan ^2}\alpha + 1 = \frac{1}{{{{\cos }^2}\alpha }} \Rightarrow {\cos ^2}\alpha = \frac{1}{{{{\tan }^2}\alpha + 1}} = \frac{1}{6} \Rightarrow \cos \alpha = \pm \frac{1}{{\sqrt 6 }}\)
Vì \(\pi < \alpha < \frac{{3\pi }}{2} \Rightarrow \sin \alpha < 0\;\) và \(\,\,\cos \alpha < 0 \Rightarrow \cos \alpha = -\frac{1}{{\sqrt 6 }}\)
Ta có: \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} \Rightarrow \sin \alpha = \tan \alpha .\cos \alpha = \sqrt 5 .(-\frac{1}{{\sqrt 6 }}) = -\sqrt {\frac{5}{6}} \)
d) Vì \(\cot \alpha = - \frac{1}{{\sqrt 2 }}\;\,\) nên \(\,\,\tan \alpha = \frac{1}{{\cot \alpha }} = - \sqrt 2 \)
Ta có: \({\cot ^2}\alpha + 1 = \frac{1}{{{{\sin }^2}\alpha }} \Rightarrow {\sin ^2}\alpha = \frac{1}{{{{\cot }^2}\alpha + 1}} = \frac{2}{3} \Rightarrow \sin \alpha = \pm \sqrt {\frac{2}{3}} \)
Vì \(\frac{{3\pi }}{2} < \alpha < 2\pi \Rightarrow \sin \alpha < 0 \Rightarrow \sin \alpha = - \sqrt {\frac{2}{3}} \)
Ta có: \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} \Rightarrow \cos \alpha = \cot \alpha .\sin \alpha = \left( { - \frac{1}{{\sqrt 2 }}} \right).\left( { - \sqrt {\frac{2}{3}} } \right) = \frac{{\sqrt 3 }}{3}\)
\(a,sin^2\alpha+cos^2\alpha=1\\ \Rightarrow cos\alpha=\pm\sqrt{1-sin^2\alpha}=\pm\sqrt{1-\left(\dfrac{\sqrt{3}}{3}\right)^2}=\pm\dfrac{\sqrt{6}}{3}\)
Vì \(0< \alpha< \dfrac{\pi}{2}\Rightarrow cos\alpha=\dfrac{\sqrt{6}}{3}\)
\(sin2\alpha=2sin\alpha cos\alpha=2\cdot\dfrac{\sqrt{3}}{3}\cdot\dfrac{\sqrt{6}}{3}=\dfrac{2\sqrt{2}}{3}\\ cos2\alpha=2cos^2\alpha-1=2\cdot\left(\dfrac{\sqrt{6}}{3}\right)^2-1=\dfrac{1}{3}\\ tan2\alpha=\dfrac{sin2\alpha}{cos2\alpha}=\dfrac{\dfrac{2\sqrt{2}}{3}}{\dfrac{1}{3}}=2\sqrt{2}\\ cot2\alpha=\dfrac{1}{tan2\alpha}=\dfrac{1}{2\sqrt{2}}=\dfrac{\sqrt{2}}{4}\)
\(b,sin^2\dfrac{\alpha}{2}+cos^2\dfrac{\alpha}{2}=1\\ \Rightarrow cos\dfrac{\alpha}{2}=\pm\sqrt{1-sin^2\dfrac{\alpha}{2}}=\pm\sqrt{1-\left(\dfrac{3}{4}\right)^2}=\pm\dfrac{\sqrt{7}}{4}\)
Vì \(\pi< \alpha< 2\pi\Rightarrow\dfrac{\pi}{2}< \dfrac{\alpha}{2}< \pi\Rightarrow cos\alpha=-\dfrac{\sqrt{7}}{4}\)
\(sin\alpha=2sin\dfrac{\alpha}{2}cos\dfrac{\alpha}{2}=2\cdot\dfrac{3}{4}\cdot\left(-\dfrac{\sqrt{7}}{4}\right)=-\dfrac{3\sqrt{7}}{8}\\ cos\alpha=2cos^2\dfrac{\alpha}{2}-1=2\cdot\left(-\dfrac{\sqrt{7}}{4}\right)^2-1=-\dfrac{1}{8}\\sin2\alpha=2sin\alpha cos\alpha=2\cdot\left(-\dfrac{3\sqrt{7}}{8}\right)\cdot\left(-\dfrac{1}{8}\right)=\dfrac{3\sqrt{7}}{32}\\ cos2\alpha=2cos^2\alpha-1=2\cdot\left(-\dfrac{1}{8}\right)^2-1=-\dfrac{31}{32}\\ tan2\alpha=\dfrac{sin2\alpha}{cos2\alpha}=\dfrac{\dfrac{3\sqrt{7}}{32}}{-\dfrac{31}{32}}=-\dfrac{3\sqrt{7}}{31}\\ cot2\alpha=\dfrac{1}{tan2\alpha}=\dfrac{1}{-\dfrac{3\sqrt{7}}{31}}=-\dfrac{31\sqrt{7}}{21}\)
a) Ta có \({\cos ^2}\alpha + {\sin ^2}\alpha \,\,\, = \,1\)
mà \(\sin \alpha = \frac{{\sqrt {15} }}{4}\) nên \({\cos ^2}\alpha + {\left( {\frac{{\sqrt {15} }}{4}} \right)^2}\,\,\, = \,1 \Rightarrow {\cos ^2}\alpha = \frac{1}{{16}}\)
Lại có \(\frac{\pi }{2} < \alpha < \pi \) nên \(\cos \alpha < 0 \Rightarrow \cos \alpha = - \frac{1}{4}\)
Khi đó \(\tan \alpha = \frac{{\sin \alpha }}{{co{\mathop{\rm s}\nolimits} \alpha }} = - \sqrt {15} ;\cot \alpha = \frac{1}{{\tan \alpha }} = - \frac{1}{{\sqrt {15} }}\)
b)
Ta có \({\cos ^2}\alpha + {\sin ^2}\alpha \,\,\, = \,1\)
mà \(\cos \alpha = - \frac{2}{3}\) nên \({\sin ^2}\alpha + {\left( {\frac{{ - 2}}{3}} \right)^2}\,\,\, = \,1 \Rightarrow {\sin ^2}\alpha = \frac{5}{9}\)
Lại có \( - \pi < \alpha < 0\) nên \(\sin \alpha < 0 \Rightarrow \sin \alpha = - \frac{{\sqrt 5 }}{3}\)
Khi đó \(\tan \alpha = \frac{{\sin \alpha }}{{co{\mathop{\rm s}\nolimits} \alpha }} = \frac{{\sqrt 5 }}{2};\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{2}{{\sqrt 5 }}\)
c)
Ta có \(\tan \alpha = 3\) nên
\(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{3}\)
\(\frac{1}{{{{\cos }^2}\alpha }} = 1 + {\tan ^2}\alpha \,\,\, = \,1 + {3^2} = 10\,\, \Rightarrow {\cos ^2}\alpha = \frac{1}{{10}}\)
Mà \({\cos ^2}\alpha + {\sin ^2}\alpha \,\,\, = \,1 \Rightarrow {\sin ^2}\alpha = \frac{9}{{10}}\)
Với \( - \pi < \alpha < 0\) thì \(\sin \alpha < 0 \Rightarrow \sin \alpha = - \sqrt {\frac{9}{{10}}} \)
Với \( - \pi < \alpha < - \frac{\pi }{2}\) thì \(\cos \alpha < 0 \Rightarrow \cos \alpha = - \sqrt {\frac{1}{{10}}} \)
và \( - \frac{\pi }{2} \le \alpha < 0\) thì \(\cos \alpha > 0 \Rightarrow \cos \alpha = \sqrt {\frac{1}{{10}}} \)
d)
Ta có \(\cot \alpha = - 2\) nên
\(\tan \alpha = \frac{1}{{\cot \alpha }} = - \frac{1}{2}\)
\(\frac{1}{{{{\sin }^2}\alpha }} = 1 + co{{\mathop{\rm t}\nolimits} ^2}\alpha \,\,\, = \,1 + {( - 2)^2} = 5\,\, \Rightarrow {\sin ^2}\alpha = \frac{1}{5}\)
Mà \({\cos ^2}\alpha + {\sin ^2}\alpha \,\,\, = \,1 \Rightarrow {\cos ^2}\alpha = \frac{4}{5}\)
Với \(0 < \alpha < \pi \) thì \(\sin \alpha > 0 \Rightarrow \sin \alpha = \sqrt {\frac{1}{5}} \)
Với \(0 < \alpha < \frac{\pi }{2}\) thì \(\cos \alpha > 0 \Rightarrow \cos \alpha = \sqrt {\frac{4}{5}} \)
và \(\frac{\pi }{2} \le \alpha < \pi \) thì \(\cos \alpha < 0 \Rightarrow \cos \alpha = - \sqrt {\frac{4}{5}} \)
\(\begin{array}{l}\cos \left( {{{225}^ \circ }} \right) = \cos \left( {{{180}^ \circ } + {{45}^ \circ }} \right) = - \cos \left( {{{45}^ \circ }} \right) = - \frac{{\sqrt 2 }}{2}\\\sin \left( {{{225}^ \circ }} \right) = \sin \left( {{{180}^ \circ } + {{45}^ \circ }} \right) = - \sin \left( {{{45}^ \circ }} \right) = - \frac{{\sqrt 2 }}{2}\\\tan \left( {225^\circ } \right) = \frac{{\sin \left( {{{225}^ \circ }} \right)}}{{\cos \left( {{{225}^ \circ }} \right)}} = 1\\\cot \left( {225^\circ } \right) = \frac{1}{{\tan \left( {225^\circ } \right)}} = 1\end{array}\)
\(\begin{array}{l}\cos \left( { - {{225}^ \circ }} \right) = \cos \left( {{{225}^ \circ }} \right) = \cos \left( {{{180}^ \circ } + {{45}^ \circ }} \right) = - \cos \left( {{{45}^ \circ }} \right) = - \frac{{\sqrt 2 }}{2}\\\sin \left( { - {{225}^ \circ }} \right) = - \sin \left( {{{225}^ \circ }} \right) = - \sin \left( {{{180}^ \circ } + {{45}^ \circ }} \right) = \sin \left( {{{45}^ \circ }} \right) = \frac{{\sqrt 2 }}{2}\\\tan \left( { - 225^\circ } \right) = \frac{{\sin \left( {{{225}^ \circ }} \right)}}{{\cos \left( {{{225}^ \circ }} \right)}} = - 1\\\cot \left( { - 225^\circ } \right) = \frac{1}{{\tan \left( {225^\circ } \right)}} = - 1\end{array}\)
\(\begin{array}{l}\cos \left( { - {{1035}^ \circ }} \right) = \cos \left( {{{1035}^ \circ }} \right) = \cos \left( {{{6.360}^ \circ } - {{45}^ \circ }} \right) = \cos \left( { - {{45}^ \circ }} \right) = \cos \left( {{{45}^ \circ }} \right) = \frac{{\sqrt 2 }}{2}\\\sin \left( { - {{1035}^ \circ }} \right) = - \sin \left( {{{1035}^ \circ }} \right) = - \sin \left( {{{6.360}^ \circ } - {{45}^ \circ }} \right) = - \sin \left( { - {{45}^ \circ }} \right) = \sin \left( {{{45}^ \circ }} \right) = \frac{{\sqrt 2 }}{2}\\\tan \left( { - 1035^\circ } \right) = \frac{{\sin \left( { - {{1035}^ \circ }} \right)}}{{\cos \left( { - {{1035}^ \circ }} \right)}} = 1\\\cot \left( { - 1035^\circ } \right) = \frac{1}{{\tan \left( { - 1035^\circ } \right)}} = - 1\end{array}\)
\(\begin{array}{l}\cos \left( {\frac{{5\pi }}{3}} \right) = \cos \left( {\pi + \frac{{2\pi }}{3}} \right) = - \cos \left( {\frac{{2\pi }}{3}} \right) = \frac{1}{2}\\\sin \left( {\frac{{5\pi }}{3}} \right) = \sin \left( {\pi + \frac{{2\pi }}{3}} \right) = - \sin \left( {\frac{{2\pi }}{3}} \right) = - \frac{{\sqrt 3 }}{2}\\\tan \left( {\frac{{5\pi }}{3}} \right) = \frac{{\sin \left( {\frac{{5\pi }}{3}} \right)}}{{\cos \left( {\frac{{5\pi }}{3}} \right)}} = - \sqrt 3 \\\cot \left( {\frac{{5\pi }}{3}} \right) = \frac{1}{{\tan \left( {\frac{{5\pi }}{3}} \right)}} = - \frac{{\sqrt 3 }}{3}\end{array}\)
\(\begin{array}{l}\cos \left( {\frac{{19\pi }}{2}} \right) = \cos \left( {8\pi + \frac{{3\pi }}{2}} \right) = \cos \left( {\frac{{3\pi }}{2}} \right) = \cos \left( {\pi + \frac{\pi }{2}} \right) = - \cos \left( {\frac{\pi }{2}} \right) = 0\\\sin \left( {\frac{{19\pi }}{2}} \right) = \sin \left( {8\pi + \frac{{3\pi }}{2}} \right) = \sin \left( {\frac{{3\pi }}{2}} \right) = \sin \left( {\pi + \frac{\pi }{2}} \right) = - \sin \left( {\frac{\pi }{2}} \right) = - 1\\\tan \left( {\frac{{19\pi }}{2}} \right)\\\cot \left( {\frac{{19\pi }}{2}} \right) = \frac{{\cos \left( {\frac{{19\pi }}{2}} \right)}}{{\sin \left( {\frac{{19\pi }}{2}} \right)}} = 0\end{array}\)
\(\begin{array}{l}\cos \left( { - \frac{{159\pi }}{4}} \right) = \cos \left( {\frac{{159\pi }}{4}} \right) = \cos \left( {40.\pi - \frac{\pi }{4}} \right) = \cos \left( { - \frac{\pi }{4}} \right) = \cos \left( {\frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\\\sin \left( { - \frac{{159\pi }}{4}} \right) = - \sin \left( {\frac{{159\pi }}{4}} \right) = - \sin \left( {40.\pi - \frac{\pi }{4}} \right) = - \sin \left( { - \frac{\pi }{4}} \right) = \sin \left( {\frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\\\tan \left( { - \frac{{159\pi }}{4}} \right) = \frac{{\cos \left( { - \frac{{159\pi }}{4}} \right)}}{{\sin \left( { - \frac{{159\pi }}{4}} \right)}} = 1\\\cot \left( { - \frac{{159\pi }}{4}} \right) = \frac{1}{{\tan \left( { - \frac{{159\pi }}{4}} \right)}} = 1\end{array}\)
\(a,cos\left(\dfrac{5\pi}{12}\right)=cos\left(\dfrac{\pi}{4}+\dfrac{\pi}{6}\right)=cos\left(\dfrac{\pi}{4}\right)cos\left(\dfrac{\pi}{6}\right)-sin\left(\dfrac{\pi}{4}\right)sin\left(\dfrac{\pi}{6}\right)=\dfrac{\sqrt{2}}{2}\cdot\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{2}}{2}\cdot\dfrac{1}{2}=\dfrac{\sqrt{6}-\sqrt{2}}{4}\\ sin\left(\dfrac{5\pi}{12}\right)=sin\left(\dfrac{\pi}{4}+\dfrac{\pi}{6}\right)=sin\left(\dfrac{\pi}{4}\right)cos\left(\dfrac{\pi}{6}\right)+cos\left(\dfrac{\pi}{4}\right)sin\left(\dfrac{\pi}{6}\right)=\dfrac{\sqrt{2}}{2}\cdot\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{2}}{2}\cdot\dfrac{1}{2}=\dfrac{\sqrt{6}+\sqrt{2}}{4}\\ tan\left(\dfrac{5\pi}{12}\right)=\dfrac{sin\left(\dfrac{5\pi}{12}\right)}{cos\left(\dfrac{5\pi}{12}\right)} =2-\sqrt{3}\\ cot\left(\dfrac{5\pi}{12}\right)=\dfrac{1}{tan\left(\dfrac{5\pi}{12}\right)}=\dfrac{1}{2-\sqrt{3}}\)
\(b,cos\left(-555^o\right)=cos\left(3\pi+\dfrac{\pi}{12}\right)=-cos\left(\dfrac{\pi}{12}\right)=-cos\left(\dfrac{\pi}{3}-\dfrac{\pi}{4}\right)=-\left[cos\left(\dfrac{\pi}{3}\right)cos\left(\dfrac{\pi}{4}\right)+sin\left(\dfrac{\pi}{3}\right)sin\left(\dfrac{\pi}{4}\right)\right]=-\dfrac{\sqrt{6}+\sqrt{2}}{4}\\ sin\left(-555^o\right)=sin\left(3\pi+\dfrac{\pi}{12}\right)=sin\left(\dfrac{\pi}{12}\right)=sin\left(\dfrac{\pi}{3}-\dfrac{\pi}{4}\right)=sin\left(\dfrac{\pi}{3}\right)cos\left(\dfrac{\pi}{4}\right)-cos\left(\dfrac{\pi}{3}\right)sin\left(\dfrac{\pi}{4}\right)=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{2}}{2}-\dfrac{1}{2}\cdot\dfrac{\sqrt{2}}{2}=\dfrac{\sqrt{6}-\sqrt{2}}{4}\\ tan\left(-555^o\right)=\dfrac{sin\left(-555^o\right)}{cos\left(-555^o\right)}=-2+\sqrt{3}\\ cot\left(-555^o\right)=\dfrac{1}{tan\left(-555^o\right)}=\dfrac{1}{-2+\sqrt{3}}=-2-\sqrt{3}\)