\(\sin27,\cos68,\sin50,\cos20,\tan7...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2015

== ở đây lớp 7 là nhìu @@

25 tháng 7 2017

đề có đúng k vậy bạn

Đang sin, cos lại tự dưng có tan

19 tháng 8 2021

a) Ta có: sin30=cos60, sin50=cos40

    Mà cos30 < cos38 < cos40 < cos60 < cos80

    Nên cos30 < cos38 < sin50 < sin30 < cos80

b) Ta có: tan75=cot15, tan63=cot27 => cot11 < tan75 < cot20 < tan63 (1)

         và: sin49=cos41 => cos30 < sin49 (2)

    Lại có: cot11=tan69 > tan49= sin49:cos49 > sin49 (do cos49<1) (3)

    Từ (1), (2) và (3) suy ra: cos30 < sin49 < cot11 < tan75 < cot20 < tan63

   

    

25 tháng 8 2021

TA CÓ   \(\sin30\)\(\cos60\)

             \(\sin50=\cos40\)

---->>  \(\cos30< \cos38< \cos40< \cos60< \cos80\)

------>> \(\cos30< \cos38< \sin50< \sin60< \cos80\)

Cái kia làm tương tự nhoa

Bạn xin 1 cái k

\(\sin70^0>\sin58^0>\sin45^0>\cos67^0>\cos77^0\)

NV
1 tháng 8 2021

Nhận xét: ở các góc từ \(0^0\Rightarrow90^0\) thì \(sin\) và tan của 1 góc sẽ tỉ lệ thuận với số đo của góc

Do \(70^0>45^0\Rightarrow tan70^0>tan45^0\Rightarrow tan70^0>1\)

Mà sin, cos của mọi góc đều không lớn hơn 1

\(\Rightarrow\) \(tan70^0\) là giá trị lớn nhất

Chuyển các giá trị cos về sin, ta có: \(cos20^0=sin70^0\) ; \(cos40^0=sin50^0\)

Do đó:

\(sin20^0< sin50^0< sin55^0< sin70^0< tan70^0\)

Hay:

\(sin20^0< cos40^0< sin55^0< cos20^0< tan70^0\)

Bài làm

Ta có: \(28\sqrt{2}\approx39,6\)

           \(\sqrt{14}\approx3,7\)

           \(2\sqrt{147}\approx24,2\)

           \(36\sqrt{4}=72\)

Nên \(36\sqrt{4}>28\sqrt{2}>2\sqrt{147}>\sqrt{14}\left(72>39,6>24,2>3,7\right)\)

Vậy sắp xếp theo thứ tự tăng dần là: \(36\sqrt{4},28\sqrt{2},2\sqrt{147},\sqrt{14}\)

# Học tốt #

7 tháng 6 2019

\(\sqrt{14}=\sqrt{7}\sqrt{2};2\sqrt{147}=\sqrt{294}\sqrt{2};36\sqrt{4}=\sqrt{2592}\sqrt{2}\)

từ đó so sánh

a: \(\sin25^0< \sin70^0\)

b: \(\cos40^0>\cos75^0\)

c: \(\sin38^0=\cos52^0< \cos27^0\)

d: \(\sin50^0=\cos40^0>\cos50^0\)