Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sin15^o+sin75^o-cos15^o-cos75^o+sin30^o\)
\(=\left(sin15+sin75^o\right)-\left(cos15^o+cos75^o\right)+sin30^o\)
\(=\dfrac{\sqrt{6}}{2}-\dfrac{\sqrt{6}}{2}+\dfrac{1}{2}\)
\(=0+\dfrac{1}{2}\)
\(=\dfrac{1}{2}\)
\(sin15^o+sin75^o-cos15^0-cos75^o+sin30^o\)
\(=cos75^o+cos15^0-cos15^0-cos75^o+sin30^o\)
\(=sin30^o=\dfrac{1}{2}\)
a)
\(1+tan^2a=\frac{1}{cos^2a}\)
\(1+3^2=\frac{1}{cos^2a}\)
\(10=\frac{1}{cos^2a}\)
\(cos^2a=\frac{1}{10}\)
\(cosa=\pm\sqrt{\frac{1}{10}}=\pm\frac{1}{\sqrt{10}}\)
\(sin^2a+cos^2a=1\)
\(sin^2a+\frac{1}{10}=1\)
\(sin^2a=\frac{9}{10}\)
\(sina=\pm\sqrt{\frac{9}{10}}=\pm\frac{3}{\sqrt{10}}\)
Vì tan = 3 nên M có 2 trường hợp :
TH1 :
sin và cos cùng dương
\(\Rightarrow M=\frac{\frac{1}{\sqrt{10}}+\frac{3}{\sqrt{10}}}{\frac{1}{\sqrt{10}}-\frac{3}{\sqrt{10}}}\)
\(=\frac{\frac{4}{\sqrt{10}}}{-\frac{2}{\sqrt{10}}}\)
= -2
TH2 :
Cả sin và cos cùng âm
\(\Rightarrow M=\frac{-\frac{1}{\sqrt{10}}+\left(-\frac{3}{\sqrt{10}}\right)}{-\frac{1}{\sqrt{10}}-\left(-\frac{3}{\sqrt{10}}\right)}\)
=\(\frac{-\frac{4}{\sqrt{10}}}{\frac{2}{\sqrt{10}}}\)
= -2
b)
\(B=\frac{sin15+cos15}{cos15}-cot75\)
=\(\frac{sin15}{cos15}+\frac{cos15}{cos15}-cot75\)
=\(tan15+1-cot75\)
=\(cot75+1-cot75\)
= 1
a) Đầu tiên bạn tự đi chứng minh hai công thức sau, do quá dài nên bạn có thể lên mạng tham khảo cách chứng minh:
\(\sin2a=2\sin a.\cos a\)
\(cos2a=cos^2a-sin^2a\)
Áp dụng hai công thức trên ta có:
\(sin30^o=2sin15^ocos15^o\Leftrightarrow sin15^ocos15^o=\frac{1}{4}\Leftrightarrow cos15^o=\frac{1}{4sin15^o}\)
\(cos30^o=cos^215^o-sin^215^o\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}=cos^215^o-sin^215^o\)
\(\Leftrightarrow\left(\frac{1}{4sin^215^o}\right)^2-sin^215^o=\frac{\sqrt{3}}{2}\)
\(\Leftrightarrow\frac{1}{16sin^415^o}-sin^215^o=\frac{\sqrt{3}}{2}\)
\(\Leftrightarrow-32sin^415^o-16sin^215^o\sqrt{3}+2=0\)
\(\Leftrightarrow sin^215^o=\frac{2-\sqrt{3}}{4}\left(sin^215^o\ge0\right)\)
\(\Leftrightarrow sin15^o=\sqrt{\frac{2-\sqrt{3}}{4}}=\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{4\sqrt{2}}}=\frac{\sqrt{3}-1}{2\sqrt{2}}=\frac{\sqrt{6}-\sqrt{2}}{4}\left(đpcm\right)\)
A=sin 150+sin 750-sin 750-sin 150+sin 300
A=sin 300=\(\dfrac{1}{2}\)=0,5
vì cos 150=sin (900-150)=sin 750
cos 750=sin (900-750)=sin 150
bạn giải giúp mình bài này nữa nhé:
B=\(\sin35^0+\sin67^0-\cos23^0-\cos55^0\)
cách 1
Dưng tam giác abc cân tại a có bc=1 và goác bac=30
kẻ phân giác bd của tam giác .
sẽ dễ dàng cm được ad=bd=bc
dựa vào tính chất phân giác tính được BC=AD=\(\frac{\sqrt{6}-\sqrt{2}}{2}\Rightarrow\sin15=\frac{\sqrt{6}-\sqrt{2}}{4}\)
cách 2 :
giải pt thôi
Có