K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)

\(A=sin^2\left(10\right)+sin^2\left(20\right)+...+sin^2\left(70\right)+sin^2\left(80\right)\\ A=sin^2\left(10\right)+sin^2\left(20\right)+...+sin^2\left(40\right)+cos^2\left(40\right)+...+cos^2\left(20\right)+cos^2\left(10\right)\\ A=\left(sin^2\left(10\right)+cos^2\left(10\right)\right)+\left(sin^2\left(20\right)+cos^2\left(20\right)\right)+....+\left(sin^2\left(40\right)+cos\left(40\right)\right)\\ A=1+1+1+1+1=4\)câu b tương tự

14 tháng 11 2017

1+1+1+1+1 thì bằng 5 chứ bn . bỏ 1 số 1 đi :)

NV
22 tháng 7 2020

\(1+tan^2a=1+\frac{sin^2a}{cos^2a}=\frac{cos^2a+sin^2a}{cos^2a}=\frac{1}{cos^2a}\)

\(1+cot^2a=1+\frac{cos^2a}{sin^2a}=\frac{sin^2a+cos^2a}{sin^2a}=\frac{1}{sin^2a}\)

\(cot^2a-cos^2a=\frac{cos^2a}{sin^2a}-cos^2a=cos^2a\left(\frac{1}{sin^2a}-1\right)=cos^2a\left(\frac{1-sin^2a}{sin^2a}\right)\)

\(=cos^2a.\frac{cos^2a}{sin^2a}=cos^2a.cot^2a\)

Câu cuối đề bài sai

24 tháng 7 2020

a) \(\frac{1+2sina.cosa}{cos^2a-sin^2a}=\frac{1+sin2a}{cos2a}\)

b) \(B=\left(1+tan^2a\right)\left(1-sin^2a\right)-\left(1+cot^2a\right)\left(1-cos^2a\right)\)

\(=\left(1+\frac{sin^2a}{cos^2a}\right)\left(sin^2a+cos^2a-sin^2a\right)-\left(1+\frac{cos^2a}{sin^2a}\right)\left(cos^2a+sin^2a-cos^2a\right)\)

\(=\left(\frac{cos^2a+sin^2a}{cos^2a}\right).cos^2a-\left(\frac{sin^2a+cos^2a}{sin^2a}\right).sin^2a\)

\(=\frac{1}{cos^2a}.cos^2a-\frac{1}{sin^2a}.sin^2a=1-1=0\)

c)

\(C=\left(sin^2a+cos^2a\right)^3-3.sin^2a.cos^2a\left(sin^2a+cos^2a\right)+3sin^2a.cos^2a\)

\(=1-3sin^2a.cos^2a\left(1-1\right)=1\)

14 tháng 10 2017

A= sin275 + sin215 - cos250 - cos240 + cot40 . cot50

A= sin275 + cos275 - cos250 - sin250 + cot40 . tan40

A= (sin275 + cos275 )-(cos250 + sin250 ) +1

A= 1-1+1

A=1

\(A=\sin^275+\sin^215-\cos^250-\cos^240+\cot40.\cot50\)

\(A=\sin^275+\cos^275-\cos^250-\sin^250+\cot40.\tan40\)

\(A=1-1+1\)

\(A=1\)