Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Cách 1. Dựa vào lí thuyết (nhận xét b)
Cách 2. Khối 12 mặt đều thuộc loại (5 ;3) nên ta có 5.12=3d=2c. Suy ra d=20.
Chọn C
Phương pháp:
Đa giác đều có n cạnh (với n chẵn) thì luôn tồn tại đường chéo là đường kính của đường tròn ngoại tiếp. Từ đó sử dụng kiến thức về tổ hợp để tính toán.
Cách giải:
Số hình vuông tạo thành từ các đỉnh của đa giác đều 20 cạnh là 20: 4 = 5 hình vuông (do hình vuông có 4 cạnh bằng nhau và 4 góc bằng nhau)
Vì đa giác đều có 20 đỉnh nên có 10 cặp đỉnh đối diện hay có 10 đường chéo đi qua tâm đường tròn ngoại tiếp.
Cứ mỗi 2 đường chéo đi qua tâm đường tròn ngoại tiếp tạo thành một hình chữ nhật nên số hình chữ nhật tạo thành là C 10 2 hình trong đó có cả những hình chữ nhật là hình vuông.
Số hình chữ nhật không phải hình vuông tạo thành là C 10 2 - 5 = 40 hình.
Chọn C
Theo sách giáo khoa Hình học 12 (trang 17), khối mười hai mặt đều có 20 đỉnh.
Chọn B.
Nếu có một mặt cầu ngoại tiếp lăng trụ thì đáy của lăng trụ phải nội tiếp trong một đường tròn, điều này không đúng cho tứ giác lồi bất kì.
Đáp án: A
Ta có: diện tích của chóp bằng diện tích của hộp, Chiều cao của chóp bằng chiều cao của hộp nên V c = V 3
Chọn C.
Dựa vào định nghĩa khối đa diện. Mỗi cạnh là cạnh chung của đúng hai mặt.
Đáp án A
Khối 20 mặt đều thuộc loại (3 ;5), nên ta có 3.20 = 5d, suy ra d = 12