K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2018

Áp dụng công thức tính khoảng cách từ 1 điểm đến 1 đường thẳng ta có: 

Chọn A.

16 tháng 7 2018

Giải bài 8 trang 81 SGK hình học 10 | Giải toán lớp 10

8 tháng 10 2019

Đáp án D

2 tháng 5 2017

Sử dụng công thức khoảng cách ta có

3. − 2 − 4.1 + 2 3 2 + − 4 2 = m − 2 + 3.1 − 3 m 2 + 3 2

⇔ 8 5 =    − 2 m m 2 + 9 ⇔ 8 m 2 + 9 = 10 m ⇔ 64 ( m 2 + 9 ) = 100 m 2 ⇔     64 m 2 + ​​​   576     = 100 m 2 ⇔ 36 m 2 =    576 ⇔ m 2 = 16 ⇔ m = ± 4

Đáp án là phương án C.

Chú ý. Học sinh có thể thử lại các phương án được đưa ra để chọn đáp án đúng, tuy nhiên sẽ tốn nhiều thời gian hơn là làm bài toán trực tiếp.

27 tháng 6 2017

Đáp án: D

Khoảng cách từ điểm M(3;-4) đến đường thẳng d: 3x - 4y - 1 = 0 là:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Khoảng cách từ điểm \(A\left( {1;1} \right)\) đến đường thẳng \(\Delta :3x + 4y + 13 = 0\) bằng:

\(d\left( {A,\Delta } \right) = \dfrac{{\left| {3.1 + 4.1 + 13} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 4\)

Chọn D

NV
14 tháng 4 2022

a.

\(\overrightarrow{AB}=\left(1;2\right)\Rightarrow\) đường thẳng AB nhận (2;-1) là 1 vtpt

Phương trình AB:

\(2\left(x-1\right)-1\left(y+3\right)=0\Leftrightarrow2x-y-5=0\)

b.

d vuông góc \(\Delta\Rightarrow d\) nhận (4;-3) là 1 vtpt

Phương trình d có dạng: \(4x-3y+c=0\)

\(d\left(B;d\right)=\dfrac{\left|4.2-3.\left(-1\right)+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=\dfrac{2}{5}\)

\(\Leftrightarrow\left|c+11\right|=2\Rightarrow\left[{}\begin{matrix}c=-9\\c=-13\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}4x-3y-13=0\\4x-3y-9=0\end{matrix}\right.\)

21 tháng 5 2019

Lấy điểm M( x0; 1-2x0)  nằm trên d.

Từ giả thiết ta có:

 

Chọn C.

AH
Akai Haruma
Giáo viên
14 tháng 3 2018

Lời giải:

Khoảng cách từ điểm $N$ đến $d$ bạn chỉ cần áp dụng công thức thôi:

\(d(N,d)=\frac{|3.2+4(-1)-10|}{\sqrt{3^2+4^2}}=\frac{8}{5}\)

Ghi nhớ: Đường thẳng \( ax+by+c=0\) thì khoảng cách từ \(M(x_0;y_0)\) đến đường thẳng đã cho là:

\(d=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}\)