Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ở trạng thái kích thích thứ nhất: n = 2
Trạng thái kích thích thứ ba: n = 4
Ta có:
\(r_n=r_0.n^2\)
\(\Rightarrow r_2=r_0.4\)
\(r_4=r_0.16\)
\(\Rightarrow \dfrac{r_4}{r_2}=4\Rightarrow r_4=r_2.4=8,48.10^{-10}(m)\)
Chọn A.
Đáp án C
Phương pháp: Sử dụng lí thuyết về trạng thái dừng của nguyên tử hiđrô
Cách giải:
Áp dụng công thức
=> electron nhận thêm một lượng động năng để chuyển lên quỹ đạo ứng với n = 3
Bán kính quỹ đạo tăng thêm một lượng
Chọn C
Năng lượng của electron ở trạng thái dừng n là \(E_n = -\frac{13,6}{n^2}.(eV)\)
\(hf_1 =\frac{hc}{\lambda_1}= E_3-E_1.(1) \)
\(hf_2 =\frac{hc}{\lambda_2}= E_5-E_2.(2) \)
Chia hai phương trình (1) và (2): \(\frac{\lambda_2}{\lambda_1}= \frac{E_3-E_1}{E_5-E_2}.(3)\)
Mặt khác: \(E_3-E_1 = 13,6.(1-\frac{1}{9}).\)
\(E_5-E_2 = 13,6.(\frac{1}{4}-\frac{1}{25}).\)
Thay vào (3) => \(\frac{\lambda_2}{\lambda_1}= \frac{800}{189}\) hay \(189 \lambda_2 = 800 \lambda_1.\)
\(\frac{r}{r_0}=\frac{2,2.10^{-10}}{5,3.10^{-11}} \approx 4.\)
=> \(r = 4r_0 = 2^2 r_0.\) Tức là electron nhảy lên trạng thái dừng L (n = 2).
Đáp án: D
Giá trị r n - r m lớn nhất trong các kết quả trên ứng với m=3 ; n=6