Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt biểu thức trên là A, ta có:
A = 21 + 22 + 23 + 24 + ... + 299 + 2100
=> A = (21 + 22) + (23 + 24) + ... + (299 + 2100)
=> A = 21.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2)
=> A = 21.3 + 23.3 + ... + 299.3
=> A = 3(21 + 23 + ... + 299)
=> A ⋮ 3
\(26=13.2\)
\(s=3.\left(1+3+9\right)+3^4.\left(1+3+9\right)+....+3^{2012}.\left(1+3+9\right)\)
\(s=3.13+3^413+.....+3^{2012}.13\)
\(s=13.\left(3+3^4+....+3^{2012}\right)\)
\(\Rightarrow s=3.\left(1+3\right)+3^3.\left(1+3\right)+.......+3^{2015}.\left(1+3\right)\)
\(s=3.4+3^3.4+....+3^{2015}.4\)
\(s=4.\left(3+3^3+.....+3^{2015}\right)\)
\(\Rightarrow4⋮2\Rightarrow4.\left(3+3^3+....+3^{2015}\right)⋮2\)
\(\Rightarrow s⋮2\Leftrightarrow s⋮13\)
\(\Rightarrow s⋮\orbr{\begin{cases}13\\2\end{cases}}\Leftrightarrow s⋮26\)
nó tất nhiên là lớn hơn
nên chúng ta ko cần phải chứng minh
thấy 1/2>1/100
1/3>1/100
/......
1/100=1/100
<=> 1/2+1/3+..+1/100>99/100
hok tốt
ta thấy 1/2 > 1/100
1/3 > 1/100
... 1/99 > 1/100
=>1/2 + 1/3 + 1/4 +...+1/100 > 99*(1/100)=99/100
Vậy 1/2 + 1/3 + 1/4 +...+1/100>99/100
Nguyễn Quang Huy viết chữ don't viết thành don mà ai cho li-ke thế
khi cả hai đều là số âm
:))))))))))))))))))))))))))))))))))