K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2017

Bài 1:

Theo đề bài ta có:

\(a=4q_1+3=9q_2+5\) (\(q_1\)\(q_2\) là thương trong hai phép chia)

\(\Rightarrow\left[\begin{matrix}a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\\a+13=9q_2+5+13=9\left(q_2+2\right)\left(2\right)\end{matrix}\right.\)

Từ (1) và (2) suy ra: \(a+13=BC\left(4;9\right)\)

\(Ư\left(4;9\right)=1\Rightarrow a+13=BC\left(4;9\right)=4.9=36\)

\(\Rightarrow a+13=36k\left(k\ne0\right)\)

\(\Rightarrow a=36k-13=36\left(k-1\right)+23\)

Vậy \(a\div36\)\(23\)

7 tháng 2 2017

Câu 1

Theo bài ra ta có:

\(a=4q_1+3=9q_2+5\)(q1 và q2 là thương của 2 phép chia)

\(\Rightarrow a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\)

\(a+13=9q_2+5+13=9.\left(q_2+2\right)\left(2\right)\)

Từ (1) và (2) ta có \(a+13\) là bội của 4 và 9 mà ƯC(4;9)=1

nên a là bội của 4.9=36

\(\Rightarrow a+13=36k\left(k\in N\right)\)

\(\Rightarrow a=36k-13\)

\(\Rightarrow a=36.\left(k-1\right)+23\)

Vậy a chia 36 dư 23

6 tháng 2 2021

Gọi b và c lần lượt là thương của các phép chia a cho 4 và chia a cho 9. (b,c là STN)

Ta có: a = 4b + 3 => 27a = 108b + 81 (1) (Cùng nhân với 27)

a = 9c + 5 => 28a = 252c + 140 (2) (Cùng nhân với 28)

Trừ (2) cho (1) ...=> 28a - 27a = 36.(7c - 3b) + 59 Hay a = 36. (7c - 3b + 1) + 23

Vậy a chia cho 36 dư 23. 

10 tháng 3 2017

em biết chắc câu 2 thôi 

đáp án câu 2 là 23

17 tháng 4 2016

 Số dư cho 36 là 5:

Ta hãy giả sử số dư nhỏ nhất theo yêu cầu của đề là: 4 . 9 +5=41

Vậy khi chia cho 36 ta sẽ có:

41:36=1 và số dư là 5

mik ko bik đúng ko nếu đúng thì thật hay quá

6 tháng 4 2016

Ta thấy :

Từ 4-9 cách nhau 5 đơn vị ( Số chia )

Từ 3 - 5 cách nhau 2 đơn vị ( số dư )

=> số chia lên 5 đơn vị thì số dư lên 2 đơn vị

=> tự làm tiếp 

tui giải rông đó hehe